[1]孙晓辉,孔阳阳,路倩颖,等.肺癌细胞A549和H460对137Cs γ射线辐射敏感性差异的研究[J].国际放射医学核医学杂志,2018,(4):346-351.[doi:10.3760/cma.j.issn.1673-4114.2018.04.011]
 Sun Xiaohui,Kong Yangyang,Lu Qianying,et al.Difference of radiosensitivity for 137Cs γ-radiation between A549 and H460 lung cancer cell lines[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(4):346-351.[doi:10.3760/cma.j.issn.1673-4114.2018.04.011]
点击复制

肺癌细胞A549和H460对137Cs γ射线辐射敏感性差异的研究(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
期数:
2018年第4期
页码:
346-351
栏目:
基础研究
出版日期:
2018-07-25

文章信息/Info

Title:
Difference of radiosensitivity for 137Cs γ-radiation between A549 and H460 lung cancer cell lines
作者:
孙晓辉 孔阳阳 路倩颖 徐畅 王彦 杜利清 纪凯华 何宁宁 王芹 刘强
300192 天津, 中国医学科学院北京协和医学院放射医学研究所, 天津市放射医学与分子核医学重点实验室
Author(s):
Sun Xiaohui Kong Yangyang Lu Qianying Xu Chang Wang Yan Du Liqing Ji Kaihua He Ningning Wang Qin Liu Qiang
Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300192, China
关键词:
肺肿瘤γ射线辐射耐受性A549细胞H460细胞核因子E2相关因子2
Keywords:
Lung neoplasmsGamma raysRadiation toleranceA549 cellsH460 cellsNuclear factor erythroid-2-related factor 2
DOI:
10.3760/cma.j.issn.1673-4114.2018.04.011
摘要:
目的 研究肺癌细胞A549和H460对137Cs γ射线的辐射敏感性差异及核因子E2相关因子2(Nrf2)蛋白含量的差异。方法 使用2、4、6 Gy 137Cs γ射线照射A549和H460细胞;1、2、4、6 Gy 137Cs γ射线照射H460细胞,用克隆形成法检测细胞增殖能力,单细胞凝胶电泳检测细胞DNA损伤修复情况,casp_1.2.3b1彗星分析软件分析olive尾距值和尾部DNA含量,蛋白质印迹法检测Nrf2蛋白表达量。克隆形成率、olive尾距值和尾部DNA含量采用独立样本t检验进行比较。结果 经2、4、6 Gy 137Cs γ射线照射后,肺癌A549细胞的克隆形成率分别为(73.78±14.69)%、(42.26±3.19)%、(17.50±2.18)%;H460细胞的克隆形成率分别为(56.38±6.28)%、(23.82±8.25)%、(4.66±0.87)%,肺癌A549细胞克隆形成率高于H460细胞,且差异均有统计学意义(t=7.99,P=0.015;t=6.75,P=0.019;t=12.03,P=0.005)。4 Gy照射后2 h,肺癌H460细胞的olive尾距值(1.27±0.05)和尾部DNA含量(4.51±0.19)%明显高于A549细胞[0.68±0.04、(2.12±0.14)%],且差异均有统计学意义(t=8.69、10.30,均P<0.05)。蛋白质印迹实验结果显示,肺癌A549比H460细胞系的Nrf2蛋白丰度高,照射后两种细胞中的Nrf2蛋白水平均升高,但肺癌A549细胞明显高于H460细胞。结论 肺癌A549细胞系对137Cs γ射线的辐射抗性强于H460细胞系,这种辐射抗性差异可能与两种细胞系内Nrf2蛋白的含量相关。
Abstract:
Objective This study aims to compare radiosensitivity to γ ray between A549 and H460 cells and explore the relationship between different radiosensitivities and Nrf2 expression. Methods A549 and H460 cells were exposed to 2, 4, and 6 Gy 137Cs γ ray, and H460 cells were exposed to 1, 2, 4, and 6 Gy 137Cs γ ray. Cell proliferation was assessed by clone formation assay. DNA damage was evaluated using comet assay. Nrf2 protein level was measured by Western blot analysis. Results Clone formation assay indicated that the clone formation rates of A549 cells were (73.78±14.69)%, (42.26±3.19)%, and (17.5±2.18)%, and those of H460 cells were (56.38±6.28)%, (23.82±8.25)%, and (4.66±0.87)% after exposure to 2, 4, and 6 Gy, respectively (t=7.99, P=0.015; t=6.75, P=0.019; t=12.03, P=0.005). Lung cancer H460 cells possessed higher olive tail moments (1.27±0.05), and tail DNA(4.51±0.19)% than A549 cells[0.68±0.04, (2.12±0.14)%] in the comet assay conducted 2 h after 4 Gy irradiation(t=8.69, 10.30, both P<0.05). The Western blot assay indicated that the Nrf2 protein level was higher in A549 cells than in H460 cells. Radiation might induce the increase in the Nrf2 protein level in A549 and H460 cells. Moreover, the Nrf2 protein level was higher in radioresistant H460R cells than in radiosensitive H460 cells. Conclusion A549 cells are more resistant to 137Cs γ ray than H460 cells, and different radiosensitivities may be related to Nrf2 protein level.

参考文献/References:

[1] Lee S, Lim MJ, Kim MH, et al. An effective strategy for increasing the radiosensitivity of human lung cancer cells by blocking Nrf2-dependent antioxidant responses[J]. Free Radic Biol Med, 2012, 53(4):807-816. DOI:10.1016/j.freeradbiomed.2012.05.038.
[2] Singh A, Bodas M, Wakabayashi N, et al. Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance[J]. Antioxid Redox Signal, 2010, 13(11):1627-1637. DOI:10.1089/ars.2010. 3219.
[3] Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases:an evolutionarily conserved mechanism[J]. Cell Mol Life Sci, 2016, 73(17):3221-3247. DOI:10.1007/s00018-016-2223-0.
[4] Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy[J]. Nat Rev Drug Discov, 2013, 12(12):931-947. DOI:10.1038/nrd4002.
[5] Zucker SN, Fink EE, Bagati A, et al. Nrf2 amplifies oxidative stress via induction of Klf9[J]. Mol Cell, 2014, 53(6):916-928. DOI:10.1016/j.molcel.2014.01.033.
[6] Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution[J].Genes Cells, 2011, 16(2):123-140. DOI:10.1111/j.1365-2443. 2010. 01473.x.
[7] Lu MC, Ji JA, Jiang ZY, et al. The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target:An Update[J]. Med Res Rev, 2016, 36(5):924-963. DOI:10.1002/med.21396.
[8] Kobayashi A, Kang MI, Watai Y, et al. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1[J]. Mol Cell Biol, 2006, 26(1):221-229. DOI:10.1128/MCB.26.1.221-229.2006.
[9] Shibata T, Ohta T, Tong KI, et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy[J/OL]. Proc Natl Acad Sci USA, 2008, 105(36):13568-13573[2017-12-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2533230/pdf/zpq13568.pdf. DOI:10.1073/pnas.0806268105.
[10] 刘佳, 高刚, 朴春南, 等. 调节肿瘤放射敏感性的miRNAs研究进展[J]. 国际放射医学核医学杂志, 2016, 40(2):159-164. DOI:10.3760/cma.j.issn.1673-4114.2016.02.015. Liu J, Gao G, Piao CN, et al. Progress of microRNAs in regulating tumor radiation sensitivity[J]. Int J Radiat Med Nucl Med, 2016, 40(2):159-164.
[11] Zhou S, Ye W, Shao Q, et al. Nrf2 is a potential therapeutic target in radioresistance in human cancer[J]. Crit Rev Oncol Hematol, 2013, 88(3):706-715. DOI:10.1016/j.critrevonc.2013.09.001.
[12] Moss RW. Do antioxidants interfere with radiation therapy for cancer?[J]. Integr Cancer Ther, 2007, 6(3):281-292. DOI:10.1177/1534735407305655.
[13] 张海燕, 孟欣, 都镇先, 等. siNrf2对万珂诱导甲状腺癌细胞凋亡影响及其机制的探讨[J]. 中华肿瘤防治杂志, 2012, 19(3):180-183, 196. Zhang HY, Meng X, Du ZX, et al.Effects of siNrf2 on apoptosis of thyroid cancer cells induced by bortezomib and its meohanism[J].Chin J Cancer Prev Treat, 2012, 19(3):180-183, 196.
[14] 冯稳, 张冰, 于庆凯. 核因子E2相关因子2在肺腺癌中的表达及临床意义[J]. 中国现代医学杂志, 2016, 26(4):29-32. DOI:10.3969/j.issn.1005-8982.2016.04.006. Feng W, Zhang B, Yu QK. Expression and clinical significance of Nrf2 in pulmonary adenocarcinoma[J]. Chin J Mod Med, 2016, 26(4):29-32.
[15] 莫享阳, 乔洪源, 欧阳学农, 等. Keap1/Nrf2/ARE信号通路介导非小细胞肺癌耐药机制的研究进展[J]. 现代肿瘤医学, 2015, 23(9):1322-1324. DOI:10.3969/j.issn.1672-4992.2015.09.45. Mo XY, Qiao HY, Ouyang XN, et al. Research progress on Keap1/Nrf2/ARE signaling pathways mediating the drug resistance mechanisms in non-small cell lung cancer[J]. J Mod Oncol, 2015, 23(9):1322-1324.

相似文献/References:

[1]麦卫平,张永林.能谱CT成像在肺癌诊断中的应用研究进展[J].国际放射医学核医学杂志,2016,40(1):77.[doi:10.3760/cma.j.issn.1673-4114.2016.01.015]
 Mai Weiping,Zhang Yonglin.Research progress of spectral imaging in the diagnosis of lung cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(4):77.[doi:10.3760/cma.j.issn.1673-4114.2016.01.015]
[2]董娟聪,刘红艳,党旭红,等.12c重离子与γ射线对人外周血淋巴细胞peng-ebv增殖、细胞周期及凋亡影响的比较[J].国际放射医学核医学杂志,2015,39(5):385.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 007]
 dong juancong,liu hongyan,dang xuhong,et al.effects of 12c heavy ion and γ ray irradiation in cell growth, cell cycle and apoptosis of human peripheral blood lymphocytes[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(4):385.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 007]
[3]霍小东,王慧星,阎卫亮,等.血管内皮抑制素对125I近距离照射裸鼠肺癌移植瘤的增敏效应研究[J].国际放射医学核医学杂志,2016,40(5):357.[doi:10.3760/cma.j.issn.1673-4114.2016.05.006]
 Huo Xiaodong,Wang Huixing,Yan Weiliang,et al.Sensitization effect of endostatin for 125I brachytherapy on transplanted tumor in nude mice[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(4):357.[doi:10.3760/cma.j.issn.1673-4114.2016.05.006]
[4]张艳兰,孙琦婷,武萍,等.呼吸门控PET/CT对于肺癌放疗靶区勾画的指导[J].国际放射医学核医学杂志,2015,39(2):105.[doi:10.3760/cma.j.issn.1673-4114.2015.02.001]
 Zhang Yanlan,Sun Qiting,Wu Ping,et al.Guiding the target delineation in radiation therapy of lung cancer by respiratory gated PET/CT[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(4):105.[doi:10.3760/cma.j.issn.1673-4114.2015.02.001]
[5]张高潮,马丽,寇莹,等.99Tcm-tetrofosmin SPECT诊断肺部肿瘤的临床价值[J].国际放射医学核医学杂志,2015,39(4):303.[doi:10.3760/cma.j.issn.1673-4114.2015.04.007]
 Zhang Gaochao,Ma Li,Kou Ying,et al.Clinical value of 99Tcm-tetrofosmin SPECT in the diagnosis of lung neoplasms[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(4):303.[doi:10.3760/cma.j.issn.1673-4114.2015.04.007]
[6]付畅,史大鹏,徐俊玲,等.不同组织学类型肺癌患者大脑静息葡萄糖代谢改变研究[J].国际放射医学核医学杂志,2014,38(2):75.[doi:10.3760/cma.j.issn.1673-4114.2014.02.002]
 Fu Chang,Shi Dapeng,Xu Junling,et al.The preliminary study of brain glucose metabolism changes in patients with lung cancer of different histological types[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(4):75.[doi:10.3760/cma.j.issn.1673-4114.2014.02.002]
[7]张俊涛.晚期肺癌125I粒子植入治疗近期疗效观察[J].国际放射医学核医学杂志,2014,38(2):94.[doi:10.3760/cma.j.issn.1673-4114.2014.02.006]
 Zhang Juntao.Short-term efficacy of 125I seeds implantation in the treatment of advanced lung cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(4):94.[doi:10.3760/cma.j.issn.1673-4114.2014.02.006]
[8]杨心蕊,卫华,郝新忠,等.过敏性肺炎伴左肺动脉栓塞18F-FDGPET/CT误诊肺癌一例[J].国际放射医学核医学杂志,2014,38(2):135.[doi:10.3760/cma.j.issn.1673-4114.2014.02.014]
[9]王芹,杜利清,徐畅,等.白细胞介素21基因联合放射对肺癌细胞生长的协同抑制作用[J].国际放射医学核医学杂志,2014,38(3):161.[doi:10.3760/cma.j.issn.1673-4114.2014.02.005]
 Wang Qin,Du Liqing,Xu Chang,et al.Synergism inhibition effect of adenovirus-mediated IL-21 gene combined with ionizing radiation on the growth of pulmonary carcinoma cells[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(4):161.[doi:10.3760/cma.j.issn.1673-4114.2014.02.005]
[10]闫玉军,叶翔,宋娜玲,等.DHEA对放、化疗损伤造血功能保护作用的实验研究[J].国际放射医学核医学杂志,2014,38(3):164.[doi:10.3760/cma.j.issn.1673-4114.2014.03.006]
 Yan Yujun,Ye Xiang,Song Naling,et al.Study on the protective function of DHEA on hematopoietic induced by radiotherapy and chemotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(4):164.[doi:10.3760/cma.j.issn.1673-4114.2014.03.006]
[11]王月英,王小春,吴红英,等.17aα-D-高炔雌二醇-3-乙酯联合γ射线照射对不同品系小鼠的抑瘤作用[J].国际放射医学核医学杂志,2012,36(2):97.[doi:10.3760/cma.j.issn.1673-4114.2012.02.010]
 WANG Yue-ying,WANG Xiao-chun,WU Hong-ying,et al.Inhibitory effects of 17aα-D-homo ethynylestradiol-3-acetate combined with γ-ray irradiation on adenocarcinoma of the lung in different mice strains[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(4):97.[doi:10.3760/cma.j.issn.1673-4114.2012.02.010]

备注/Memo

备注/Memo:
收稿日期:2017-12-11。
基金项目:国家自然科学基金(31670859);中国医学科学院“中央级公益性科研院所基本科研业务费(2016ZX310198);协和青年基金中央高校基本科研业务费专项资金(3332016100);中国医学科学院放射医学研究所创新团队基金(1650)
通讯作者:刘强,Email:liuqiang@irm-cams.ac.cn
更新日期/Last Update: 2018-07-25