[1]安淑娴,宋少莉,黄钢.放射性核素标记的凋亡显像剂的研究进展[J].国际放射医学核医学杂志,2015,39(6):470-477.[doi:10.3760/cma.j.issn.1673-4114.2015.06.008]
 An Shuxian,Song Shaoli,Huang Gang.Recent advances in apoptosis imaging using radionuclide-labeled tracers[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(6):470-477.[doi:10.3760/cma.j.issn.1673-4114.2015.06.008]
点击复制

放射性核素标记的凋亡显像剂的研究进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
39
期数:
2015年第6期
页码:
470-477
栏目:
出版日期:
2015-11-25

文章信息/Info

Title:
Recent advances in apoptosis imaging using radionuclide-labeled tracers
作者:
安淑娴 宋少莉 黄钢
200127, 上海交通大学医学院附属仁济医院核医学科
Author(s):
An Shuxian Song Shaoli Huang Gang
Department of Nuclear Medicine, RenJi Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
关键词:
细胞凋亡分子探针放射性核素显像正电子发射断层显像术体层摄影术发射型计算机单光子
Keywords:
ApoptosisMolecular probesRadionuclide imagingPositron-emission tomographyTomography emission-computed single-photon
DOI:
10.3760/cma.j.issn.1673-4114.2015.06.008
摘要:
细胞凋亡存在于多种病理过程中,包括神经系统变性疾病、缺血性损伤、自身免疫性疾病和多种肿瘤等。凋亡检测的可视化对疾病的诊断、新的治疗方法的开发与疗效评价具有重要意义。传统的凋亡检测方法包括光学显微镜观察、原位末端标记法分析、流式细胞仪检测等,但其侵入性方式限制了之后的随访研究。而活体内凋亡显像有助于无创观察、直观了解凋亡发生的体内过程。PET与SPECT的发展,以及新的针对靶点的放射性核素标记显像剂的合成,使核医学进入了分子影像学的新时代。近年来,细胞凋亡PET与SPECT显像剂的研发应用,使活体内无创PET与SPECT检测细胞凋亡成为现实。笔者主要介绍用于在体凋亡显像的放射性标记探针及其最新研究应用进展。
Abstract:
Apoptosis or programmed cell death is an important form of cell death. Apoptosis is involved in numerous human pathological conditions, such as neurodegenerative diseases, ischemic damage, autoimmune disorders, and many types of cancer. Visualization of apoptosis is enormously beneficial in clinical diagnosis, development of new therapies, and therapeutic evaluation. The traditional methods of apoptosis detection include optical microscopy, TdT-mediated-dUTP nick end labeling analysis, and flow cytometry. However, these invasive techniques restrict the conduct of follow-up studies. Apoptosis imaging in living subjects has contributed to nondestructive observation and in understanding the biological process of apoptosis. The developments in PET and SPECT technologies, including the synthesis of targeted radionuclide tracers, led nuclear medicine into a new era of molecular imaging. The development and application of PET and SPECT as apoptosis imaging probes rendered the non-invasive detection of apoptosis in vivo a reality. This article reviewed the recent advances in apoptosis imaging using radionuclide-labeled tracers.

参考文献/References:

[1] Kerr JF, Wyllie AH, Currie AR. Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. Br J Cancer, 1972, 26(4):239-257.
[2] Green DR, Kroemer G. The pathophysiology of mitochondrial cell death[J]. Science, 2004, 305(5684):626-629.
[3] Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell, 2008, 132(1):27-42.
[4] Hakum?ki JM, Liimatainen T. Molecular imaging of apoptosis in cancer[J]. Eur J Radiol, 2005, 56(2):143-153.
[5] Lahorte CM, Vanderheyden JL, Steinmetz N, et al. Apoptosis-detecting radioligands:current state of the art and future perspectives[J]. Eur J Nucl Med Mol Imaging, 2004, 31(6):887-919.
[6] Lee S, Xie J, Chen X. Peptides and peptide hormones for molecular imaging and disease diagnosis[J]. Chem Rev, 2010, 110(5):3087-3111.
[7] Gerke V, Moss SE. Annexins:from structure to function[J]. Physiol Rev, 2002, 82(2):331-371.
[8] Oling F, Bergsma-Schutter W, Brisson A. Trimers, dimers of trimers, and trimers of trimers are common building blocks of annexin a5 two-dimensional crystals[J]. J Struct Biol, 2001, 133(1):55-63.
[9] Kemerink GJ, Boersma HH, Thimister PW, et al. Biodistribution and dosimetry of 99mTc-BTAP-annexin-V in humans[J]. Eur J Nucl Med, 2001, 28(9):1373-1378.
[10] Blankenberg FG, Katsikis PD, Tait JF, et al. In vivo detection and imaging of phosphatidylserine expression during programmed cell death[J]. Proc Natl Acad Sci U S A, 1998, 95(11):6349-6354.
[11] Kartachova MS, Valdés Olmos RA, Haas RL, et al. 99mTc-HYNIC-rh-annexin-V scintigraphy:visual and quantitative evaluation of early treatment-induced apoptosis to predict treatment outcome[J]. Nucl Med Commun, 2008, 29(1):39-44.
[12] Yang DJ, Azhdarinia A, Wu P, et al. In vivo and in vitro measurement of apoptosis in breast cancer cells using 99mTc-EC-annexin V[J]. Cancer Biother Radiopharm, 2001, 16(1):73-83.
[13] Lu C, Jiang Q, Hu M, et al. Preliminary biological evaluation of novel 99mTc-Cys-annexin A5 as a apoptosis imaging agent[J]. Molecules, 2013, 18(6):6908-6918.
[14] Bauwens M, De Saint-Hubert M, Devos E, et al. Site-specific 68Ga-labeled Annexin A5 as a PET imaging agent for apoptosis[J]. Nucl Med Biol, 2011, 38(3):381-392.
[15] Benali K, Louedec L, Azzouna RB, et al. Preclinical validation of 99mTc-annexin A5-128 in experimental autoimmune myocarditis and infective endocarditis:comparison with 99mTc-HYNIC-annexin A5[J/OL]. Mol Imaging, 2014, 13:1-10[2015-07-09]. http://www. ncbi. nlm. nih. gov/pubmed/?term=25431156.
[16] Li X, Link JM, Stekhova S, et al. Site-specific labeling of annexin V with F-18 for apoptosis imaging[J]. Bioconjug Chem, 2008, 19(8):1684-1688.
[17] Yagle KJ, Eary JF, Tait JF, et al. Evaluation of 18F-annexin V as a PET imaging agent in an animal model of apoptosis[J]. J Nucl Med, 2005, 46(4):658-666.
[18] Murakami Y, Takamatsu H, Taki J, et al. 18F-labelled annexin V:a PET tracer for apoptosis imaging[J]. Eur J Nucl Med Mol Imaging, 2004, 31(4):469-474.
[19] W?ngler C, W?ngler B, Lehner S, et al. A universally applicable 68Ga-labeling technique for proteins[J]. J Nucl Med, 2011, 52(4):586-591.
[20] Bauwens M, De Saint-Hubert M, Devos E, et al. Site-specific 68Ga-labeled Annexin A5 as a PET imaging agent for apoptosis[J]. Nucl Med Biol, 2011, 38(3):381-392.
[21] Wang F, Fang W, Zhang MR, et al. Evaluation of chemotherapy response in VX2 rabbit lung cancer with 18F-labeled C2A domain of synaptotagmin I[J]. J Nucl Med, 2011, 52(4):592-599.
[22] Poulsen RH, Rasmussen JT, Ejlersen JA, et al. Pharmacokinetics of the phosphatidylserine tracers 99mTc-lactadherin and 99mTc-annexin V in pigs[J/OL]. EJNMMI Res, 2013, 3(1):15[2015-07-09]. http://www. ejnmmires. com/content/3/1/15.
[23] Song S, Xiong C, Lu W, et al. Apoptosis imaging probe predicts early chemotherapy response in preclinical models:A comparative study with 18F-FDG PET[J]. J Nucl Med, 2013, 54(1):104-110.
[24] Marconescu A, Thorpe PE. Coincident exposure of phosphatidylethanolamine and anionic phospholipids on the surface of irradiated cells[J]. Biochim Biophys Acta, 2008, 1778(10):2217-2224.
[25] Wang K, Purushotham S, Lee JY, et al. In vivo imaging of tumor apoptosis using histone H1-targeting peptide[J]. J Control Release, 2010, 148(3):283-291.
[26] Koulov AV, Stucker KA, Lakshmi C, et al. Detection of apoptotic cells using a synthetic fluorescent sensor for membrane surfaces that contain phosphatidylserine[J]. Cell Death Differ, 2003, 10(12):1357-1359.
[27] Wyffels L, Gray BD, Barber C, et al. Synthesis and preliminary evaluation of radiolabeled bis(Zinc(II)-dipicolylamine) coordination complexes as cell death imaging agents[J]. Bioorg Med Chem, 2011, 19(11):3425-3433.
[28] Oltmanns D, Zitzmann-Kolbe S, Mueller A, et al. Zn(II)-bis(cyclen)complexes and the imaging of apoptosis/necrosis[J]. Bioconjug Chem, 2011, 22(12):2611-2624.
[29] Grimberg H, Levin G, Shirvan A, et al. Monitoring of tumor response to chemotherapy in vivo by a novel small-molecule detector of apoptosis[J]. Apoptosis, 2009, 14(3):257-267.
[30] Reshef A, Shirvan A, Waterhouse RN, et al. Molecular imaging of neurovascular cell death in experimental cerebral stroke by PET[J]. J Nucl Med, 2008, 49(9):1520-1528.
[31] H?glund J, Shirvan A, Antoni G, et al. 18F-ML-10, a PET tracer for apoptosis:first human study[J]. J Nucl Med, 2011, 52(5):720-725.
[32] Bleackley RC, Heibein JA. Enzymatic control of apoptosis[J]. Nat Prod Rep, 2001, 18(4):431-440.
[33] Challapalli A, Kenny LM, Hallett WA, et al. 18F-ICMT-11, a caspase-3-specific PET tracer for apoptosis:biodistribution and radiation dosimetry[J]. J Nucl Med, 2013, 54(9):1551-1556.
[34] Zhou D, Chu W, Rothfuss J, et al. Synthesis, radiolabeling, and in vivo evaluation of an 18F-labeled isatin analog for imaging caspase-3 activation in apoptosis. Bioorg Med Chem Lett, 2006, 16(19):5041-5046.
[35] Wang F, Wang Z, Hida N, et al. A cyclic HSV1-TK reporter for real-time PET imaging of apoptosis[J]. Proc Natl Acad Sci USA, 2014, 111(14):5165-5170.
[36] Yaghoubi SS, Gambhir SS. PET imaging of herpes simplex virus type 1 thymidine kinase(HSV1-tk) or mutant HSV1-sr39tk reporter gene expression in mice and humans using[18F]FHBG. Nat Protoc, 2006, 1(6):3069-3075.
[37] Banerji U. Heat shock protein 90 as a drug target:Some Like It Hot[J]. Clin Cancer Res, 2009, 15(1):9-14.
[38] Van De Wiele C, Lahorte C, Vermeersch H, et al. Quantitative tumor apoptosis imaging using technetium-99m-HYNIC annexin V single photon emission computed tomography[J]. J Clin Oncol, 2003, 21(18):3483-3487.
[39] 兰晓莉, 张永学, 何勇. 凋亡显像剂99mTc-HYNIC-annexin V对肿瘤模型化疗疗效早期评价的可行性[J]. 中华肿瘤杂志, 2008, 30(10):737-740.
[40] Qin H, Zhang MR, Xie L, et al. PET imaging of apoptosis in tumor-bearing mice and rabbits after paclitaxel treatment with 18F- Labeled recombinant human His10-annexin V[J]. Am J Nucl Med Mol Imaging, 2015, 5(1):27-37.
[41] Nguyen QD, Lavdas I, Gubbins J, et al. Temporal and spatial evolution of therapy-induced tumor apoptosis detected by caspase-3-selective molecular imaging[J]. Clin Cancer Res, 2013, 19(14):3914-3924.
[42] Zhang Y, Stevenson GD, Barber C, et al. Imaging of rat cerebral ischemia-reperfusion injury using 99mTc-labeled duramycin[J]. Nucl Med Biol, 2013, 40(1):80-88.
[43] Thimister PW, Hofstra L, Liem IH, et al. In vivo detection of cell death in the area at risk in acute myocardial infarction[J]. J Nucl Med, 2003, 44(3):391-396.
[44] Lehner S, Todica A, Vanchev Y, et al. In vivo monitoring of parathyroid hormone treatment after myocardial infarction in mice with[68Ga] annexin A5 and[18F] fluorodeoxyglucose positron emission tomography[J/OL]. Mol Imaging, 2014, 13[2015-07-09]. http://www. ncbi. nlm. nih. gov/pubmed/?term=25249170.
[45] 黄代娟, 兰晓莉, 张永学. 99mTc-HYNIC-Annexin V动脉粥样硬化斑块显像的实验研究[J]. 中华核医学杂志, 2008, 28(3):206-208.
[46] D’Arceuil H, Rhine W, De Crespigny A, et al. 99mTc annexin V imaging of neonatal hypoxic brain injury[J]. Stroke, 2000, 31(11):2692-2700.
[47] 朱羽苑, 黄钢. 分子核医学显像展望:多参数分子显像时代[J]. 国际放射医学核医学杂志, 2010, 34(3):129-134.
[48] Watanabe M, Hitomi M, Van Der Wee K, et al. The pros and cons of apoptosis assays for use in the study of cells, tissues, and organs[J]. Microsc Microanal, 2002, 8(5):375-391.
[49] Sugiura G, Kühn H, Sauter M, et al. Radiolabeling strategies for tumor-targeting proteinaceous drugs[J]. Molecules, 2014, 19(2):2135-2165.

相似文献/References:

[1]陈顺军,程兵.肿瘤细胞凋亡核素显像分子探针研究进展[J].国际放射医学核医学杂志,2016,40(2):149.[doi:10.3760/cma.j.issn.1673-4114.2016.02.013]
 Chen Shunjun,Cheng Bing.Progress in molecular probes of radionuclide tumor apoptosis imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):149.[doi:10.3760/cma.j.issn.1673-4114.2016.02.013]
[2]张晓,兰晓莉,胡帆,等.点击化学在分子影像学中的应用和进展[J].国际放射医学核医学杂志,2016,40(3):196.[doi:10.3760/cma.j.issn.1673-4114.2016.03.008]
 Zhang Xiao,Lan Xiaoli,Hu Fan,et al.Applications and advances of click chemistry in molecular imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):196.[doi:10.3760/cma.j.issn.1673-4114.2016.03.008]
[3]张俊伶,薛晓蕾,李源,等.富氢水对电离辐射引起胸腺细胞损伤的影响[J].国际放射医学核医学杂志,2015,39(5):358.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 001]
 zhang junling,xue xiaolei,li yuan,et al.effects of hydrogen-rich water on radiation-induced thymus injury[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(6):358.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 001]
[4]解朋,黄建敏,张芳,等.99Tcm-MAG3-isoDGR-2C分子探针的制备与体内分布的实验研究[J].国际放射医学核医学杂志,2016,40(5):345.[doi:10.3760/cma.j.issn.1673-4114.2016.05.004]
 Xie Peng,Huang Jianmin,Zhang Fang,et al.Labeling MAG3-isoDGR-2C with 99Tcm and its biodistribution in mice[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):345.[doi:10.3760/cma.j.issn.1673-4114.2016.05.004]
[5]汪文霞,兰晓莉,张永学.HER2的表达及其分子影像的研究进展[J].国际放射医学核医学杂志,2016,40(5):363.[doi:10.3760/cma.j.issn.1673-4114.2016.05.007]
 Wang Wenxia,Lan Xiaoli,Zhang Yongxue.Research and development of HER2 expression molecular imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):363.[doi:10.3760/cma.j.issn.1673-4114.2016.05.007]
[6]李帅,李剑明.动脉粥样硬化易损斑块放射性核素标记分子探针的研究进展[J].国际放射医学核医学杂志,2015,39(1):80.[doi:10.3760/cma.j.issn.1673-4114.2015.01.017]
 Li Shuai,Li Jianming.Research progress of molecular probes labeled with radionuclide for imaging of atherosclerosis vulnerable plaque[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(6):80.[doi:10.3760/cma.j.issn.1673-4114.2015.01.017]
[7]林潇,唐明灯.靶向表皮生长因子受体分子探针研究进展[J].国际放射医学核医学杂志,2015,39(1):85.[doi:10.3760/cma.j.issn.1673-4114.2015.01.018]
 Lin Xiao,Tang Mingdeng.Research progresses on molecular probes targeting epidermal growth factor receptor[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(6):85.[doi:10.3760/cma.j.issn.1673-4114.2015.01.018]
[8]徐畅,王彦,杜利清,等.shRNA干扰沉默Net1基因对电离辐射损伤反应的影响[J].国际放射医学核医学杂志,2013,37(3):135.[doi:10.3760/cma.j.issn.1673-4114.2013.03.002]
 XU Chang,WANG Yan,DU Li-qing,et al.The effects of short hairpin RNA-mediated silencing Net1 on ionizing radiation-induced damage responses[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(6):135.[doi:10.3760/cma.j.issn.1673-4114.2013.03.002]
[9]郭艳婷,张鹏飞,刘强.Smac与肿瘤放射治疗[J].国际放射医学核医学杂志,2013,37(5):309.[doi:10.3760/cma.j.issn.1673-4114.2013.05.014]
 GUO Yan-ting,ZHANG Peng-fei,LIU Qiang.Effects of Smac on tumor radiotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(6):309.[doi:10.3760/cma.j.issn.1673-4114.2013.05.014]
[10]孔艳艳,管一晖,吴平.PET分子探针在阿尔茨海默病早期诊断中的研究进展[J].国际放射医学核医学杂志,2012,36(5):257.[doi:10.3760/cnla.j.issn.1673-4114.2012.05.001]
 KONG Yan-yan,GUAN Yi-hui,WU Ping.Novel PET molecular probes for early diagnosis of Alzheimer’s disease[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(6):257.[doi:10.3760/cnla.j.issn.1673-4114.2012.05.001]
[11]元龚骏,聂大红,唐刚华.临床用肿瘤细胞凋亡核医学显像剂研究进展[J].国际放射医学核医学杂志,2017,41(4):271.[doi:10.3760/cma.j.issn.1673-4114.2017.04.007]
 Yuan Gongjun,Nie Dahong,Tang Ganghua.Progress of nuclear medicine imaging agents for the clinical apoptosis imaging of tumors[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(6):271.[doi:10.3760/cma.j.issn.1673-4114.2017.04.007]
[12]张凯秀,王雪梅,赵建民.放射性核素显像探针在细胞凋亡中的研究进展[J].国际放射医学核医学杂志,2018,(6):559.[doi:10.3760/cma.j.issn.1673-4114.2018.06.015]
 Zhang Kaixiu,Wang Xuemei,Zhao Jianmin.Research progress of radionuclide imaging probes in apoptosis[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(6):559.[doi:10.3760/cma.j.issn.1673-4114.2018.06.015]

备注/Memo

备注/Memo:
收稿日期:2015-7-9。
通讯作者:宋少莉,Email:shaoli-song@163.com
更新日期/Last Update: 1900-01-01