[1]张晓,兰晓莉,胡帆,等.点击化学在分子影像学中的应用和进展[J].国际放射医学核医学杂志,2016,40(3):196-201.[doi:10.3760/cma.j.issn.1673-4114.2016.03.008]
 Zhang Xiao,Lan Xiaoli,Hu Fan,et al.Applications and advances of click chemistry in molecular imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):196-201.[doi:10.3760/cma.j.issn.1673-4114.2016.03.008]
点击复制

点击化学在分子影像学中的应用和进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
40
期数:
2016年第3期
页码:
196-201
栏目:
出版日期:
2016-05-25

文章信息/Info

Title:
Applications and advances of click chemistry in molecular imaging
作者:
张晓 兰晓莉 胡帆 张永学
430022, 武汉, 华中科技大学同济医学院附属协和医院核医学科, 湖北省分子影像重点实验室
Author(s):
Zhang Xiao Lan Xiaoli Hu Fan Zhang Yongxue
Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
关键词:
点击化学分子影像分子探针
Keywords:
Click chemistryMolecular imagingMolecular probe
DOI:
10.3760/cma.j.issn.1673-4114.2016.03.008
摘要:
点击化学基于其快速高效、高选择性、生物正交反应等特点,在现代化学发展及放射性药物化学合成中发挥着日益重要的作用。此外,点击化学在放射性探针制备及分子显像预定位技术方面也具有广泛的应用前景。笔者就点击化学在分子影像方面的进展综述如下。
Abstract:
Click reaction plays an important role in the development of modern chemistry and radiopharmaceutical synthesis because of its rapid, highly selective, and bioorthogonal characteristics. Furthermore, new radiotracers are beginning to have tremendous utilities of the reactions and a novel pre-targeting strategy. The present review focuses on the potential applications of various click chemistry ligations in molecular imaging.

参考文献/References:

[1] Best MD.Click chemistry and bioorthogonal reactions:unprecedented selectivity in the labeling of biological molecules[J].Biochemistry, 2009, 48(28):6571-6584.DOI:10.1021/bi9007726.
[2] Yuan YE, Liang GL.A biocompatible, highly efficient click reaction and its applications[J].Org Biomol Chem, 2014, 12(6):865-871.DOI:10.1039/c3ob41241e.
[3] Lutz JF, Nanotechnology for Life Science Research Group.1, 3-dipolar cycloadditions of azides and alkynes:a Universal ligation tool in polymer and materials science[J].Angew Chem Int Engl, 2007, 46(7):1018-1025.
[4] Del Amo DS, Wang W, Jiang H, et al.Biocompatible Copper(I)catalysts for in vivo imaging of glycans[J].J Am Chem Soc, 2010, 132(47):16893-16899.DOI:10.1021/ja106553e.
[5] 赵正达, 袁伟忠, 顾书英, 等.点击化学及其在生物医学领域的应用[J].化学进展, 2010, 22(2):417-426.DOI:1005-281X(2010)02/3-0417-10.Zhao ZD, Yuan WZ, Gu SY, et al."Click chemistry" and its growing applications in biomedical field[J].Prog Chem, 2010, 22(2):417-426.
[6] Ledin PA, Friscourt F, Guo J, et al.Convergent assembly and surface modification of multifunctional dendrimers by three consecutive click reactions[J].Chemistr, 2011, 17(3):839-846.DOI:10.1002/chem.201002052.
[7] Wiessler M, Waldeck W, Kliem C, et al.The Diels-Alder-reaction with inverse-electron-demand, a very efficient versatile click-reaction concept for proper ligation of variable molecular partners[J].Int J Med Sci, 2009, 7(1):19-28.
[8] Yang Y, Huo F, Yin C, et al.Thiol-chromene click chemistry:a coumarin-based derivative and its use as regenerablethiol probe and in bioimagingapplications[J].BiosensBioelectron, 2013, 47(2):300-360.DOI:10.1016/j.bios.2013.03.007.
[9] Zeng DX, Zeglis BM, Lewis JS, et al.The growing impact of bioorthogonal click chemistry on the development of radiopharmaceuticals[J].J Nucl Med, 2013, 54(6):829-832.DOI:10.2967/jnumed.112.115550.
[10] Tornoe CW, Christensen C, Meldal M.Peptidotriazoles on solid phase:[1, 2, 3]-triazoles by regiospecific Copper(I)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides[J].J Org Chem, 2002, 67(9):3057-3064.DOI:10.1021/jo011148j.
[11] Rostovtsev VV, Green LG, Fokin VV, et al.A stepwise huisgencycloaddition process:copper(I)-catalyzed regioselective"ligation"of azides and terminal alkynes[J].Angew Chem Int Ed Engl, 2002, 41(14):2596-2599.
[12] 张宝石, 周乃康, 王卉, 等.18F-FP-peptide用于化疗后肿瘤细胞凋亡显像[J].中华核医学与分子影像杂志, 2012, 32(2):84-89.DOI:10.3760/cma.j.issn.2095-2848.2012.02.002.Zhang BS, Zhou NK, Wang H, et al.Imaging of apoptosis with 18F-FP-peptide focused on the evaluation of tumor response to chemotherapy[J].Chin J Nucl Med Mol Imaging, 2012, 32(2):84-89.DOI:10.3760/cma.j.issn.2095-2848.2012.02.002.
[13] Bejot R, Carroll L, Bhakoo K, et al.Afluorous and click approach for screening potential PET probes:Evaluation of potential hypoxia biomarkers[J].Bioorg Med Chem, 2012, 20(1):324-329.DOI:10.1016/j.bmc.2011.10.084.
[14] 贾丽娜.基于点击化学的分子影像探针制备研究[D].上海:中国科学院研究生院(上海应用物理研究所), 2014.Jia LN.The researchof molecular imaging probesvia click chemistry[D].Shanghai:Chinese Academy of Sciences(Shanghai Institute of Applied Physics), 2014.
[15] Glaser M, ArstadE."Click labeling" with 2-[18F] fluoroethylazide for positron emission tomography[J].Bioconj Chem, 2007, 18(3):989-993.
[16] Michel K, Buether K, Law MP, et al.Development and evaluation of endothelin-A receptor(radio)ligands for positron emission tomography[J].J Med Chem, 2011, 54(4):939-948.DOI:10.1021/jm101110w.
[17] Kuboyama T, Nakahara M, Yoshino M, et al.Stoichiometry-focused F-18-labeling of alkyne-substituted oligodeoxynucleotides using azido([F-18] fluoromethyl)benzenes by Cu-catalyzed Huisgen reaction[J].Bioorg Med Chem, 2011, 19(1):249-255.DOI:10.1016/j.bmc.2010.11.033.
[18] Maschauer S, Michel K, Tripal P, et al.Synthesis and in vivo evaluation of an(18)F-labeled glycoconjugate of PD156707 for imaging ETA receptor expression in thyroid carcinoma by positron emission tomography[J].Am J Nucl Med Mol Imaging, 2013, 3(5):425-436.
[19] Arksey N, Hadizad T, Ismail B, et al.Synthesis and evaluation of the novel 2-[18F]fluoro-3-propoxy-triazole-pyridine-substituted losartan for imaging AT1receptors[J].Bioorg Med Chem, 2014, 22(15):3931-3937.DOI:10.1016/j.bmc.2014.06.011.
[20] Sirion U, Kim HJ, Lee JH, et al.An efficient F-18 labeling method for PET study:Huisgen 1, 3-dipolar cycloaddition of bioactive substances and F-18-labeled compounds[J].Tetrahedron Lett, 2007, 48(23):3953-3957.DOI:10.1016/j.tetlet.2007.04.048.
[21] Waldmann CM, Hermann S, Faust AA, et al.Novel fluorine-18 labeled 5-(1-pyrrolidinylsulfonyl)-7-azaisatin derivatives as potential PET tracers for in vivo imaging of activated caspases in apoptosis[J].Bioorg Med Chem, 2015, 23(17):5734-5739.DOI:10.1016/j.bmc.2015.07.014.
[22] Mirfeizi L, Rybczynska AA, Van Waarde AA, et al.[18F]-(fluoromethoxy)ethoxy)methyl)-1H-1, 2, 3-triazol-1-yl)propan-2-ol 18F-FPTC)a novel PET-ligand for cerebral beta-adrenoceptors[J].Nucl Med Biol, 2014, 41(2):203-209.DOI:10.1016/j.nucmedbio.2013.10.011.
[23] Daumar P, Wanger-Baumann CA, Pillarsetty N, et al.Efficient 18F-labeling of large 37-amino-acid pHLIP peptide analogues and their biological evaluation[J].Bioconjug Chem, 2012, 23(8):1557-1566.
[24] Codelli JA, Baskin JM, Agard NJ, et al.Second-generation difluorinatedcyclooctynes for copper-free click chemistry[J].J Am Chem Soc, 2008, 130(34):11486-11493.
[25] Campbell-Verduyn LS, Mirfeizi L, Schoonen AK, et al.Strain-promoted copper-free "click" chemistry for 18F radiolabeling of bombesin[J].Angew Chem Int Ed Engl, 2011, 50(47):11117-11120.DOI:10.1002/anie.201105547.
[26] Bouvet V, Wuest M, WuestF.Copper-free click chemistry with the short-lived positron emitter fluorine-18[J].Org Biomol Chem, 2011, 9(21):7393-7399.DOI:10.1039/c1ob06034a.
[27] Li Z, Cai H, Hassink M, et al.Tetrazine-trans-cyclooctene ligation for the rapid construction of 18F labeled probes[J].Chem Commun(Camb), 2010, 46(42):8043-8045.
[28] Wu Z, Liu S, Hassink M, et al.Development and evaluation of 18F-TTCO-Cys40-Exendin-4:a PET probe for imaging transplanted islets[J].J Nucl Med, 2013, 54(2):244-251.DOI:10.2967/jnumed.112.109694.
[29] Herth MM, Andersen VL, Lehel SA, et al.Development of a 11C-labeled tetrazine for rapid tetrazine-trans-cyclooctene ligation[J].Chem Commun(Camb), 2013, 49(36):3805-3807.DOI:10.1039/c3cc41027g.
[30] Zeglis BM, Mohindra P, Weissmann GI, et al.Modular strategy for the construction of radiometalated antibodies for positron emission tomography based on inverse electron demand Diels-Alder click chemistry[J].Bioconjug Chem, 2011, 22(10):2048-2059.DOI:10.1021/bc200288d.
[31] Jeon J, Shen B, Xiong L, et al.Efficient method for site-specific F-18-labeling of biomolecules using the rapid condensation reaction between 2-cyanobenzothiazole and cysteine[J].Bioconjug Chem, 2012, 23(9):1902-1908.DOI:10.1021/bc300273m.
[32] Godinat A, Park HM, Miller SC, et al.A biocompatible in vivo ligation reaction and its application for noninvasive bioluminescent imaging of protease activity in living mice[J].ACS Chem Biol, 2013, 8(5):987-999.DOI:10.1021/cb3007314.
[33] Cao CY, Shen YY, Wang JD, et al.Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents[J].Sci Rep, 2013, 3:1024.DOI:10.1038/srep01024.
[34] Dragulescu-Andrasi A, Kothapalli SR, Tikhomirov GA, et al.Activatableoligomerizable imaging agents for photoacoustic imaging of furin-like activity in living subjects[J].J Am Chem Soc, 2013, 135(30):11015-11022.
[35] Knight JC, Cornelissen B.Bioorthogonal chemistry:implications for pretargetednuclear(PET/SPECT)imaging and therapy[J].Am J Nucl Med Mol Imaging, 2014, 4(2):96-113.
[36] Rossin R, Van Den Bosch SM, Ten Hoeve WA, et al.Highly reactive trans-Cyclooctene Tags with improved stability for Diels-Alder chemistry in living systems[J].Bioconjug Chem, 2013, 24(7):1210-1217.DOI:10.1021/bc400153y.
[37] Rossin R, Verkerk PR, Van Den Bosch SM, et al.In vivo chemistry for pretargeted tumor imaging in live mice[J].Angew Chem Int Ed Engl, 2010, 49(19):3375-3378.DOI:10.1002/anie.200906294.
[38] Garcia MF, Zhang X, Shah M, et al.Tc-99m-bioorthogonal click chemistry reagent for in vivo pretargeted imaging[J].Bioorg Med Chem, 2016, 24(6):1209-1215.DOI:10.1016/j.bmc.2016.01.046.
[39] Evans HL, Quang-De Nguyen QD, Carroll LS, et al.Abioorthogonal Ga-68-labelling strategy for rapid in vivo imaging[J].Chem Commun, 2014, 50(67):9557-9560.DOI:10.1039/c4cc03903c.
[40] Nichols B, Qin Z, Yang J, et al.68Ga chelating bioorthogonaltetrazine polymers for the multistep labeling of cancer biomarkers[J].Chem Commun(Camb), 2014, 50(40):5215-5217.
[41] Devaraj NK, Thurber GM, Keliher EJ, et al.Reactive polymer enables efficient in vivo bioorthogonal chemistry[J].Proc Natl Acad Sci USA, 2012, 109(13):4762-4767.DOI:10.1073/pnas.1113466109.

相似文献/References:

[1]周惠君,董萍,沈国华,等.11C-蛋氨酸PET/CT显像在脑胶质瘤中的应用价值[J].国际放射医学核医学杂志,2015,39(2):161.[doi:10.3760/cma.j.issn.1673-4114.2015.02.013]
 Zhou Huijun,Dong Ping,Shen Guohua,et al.Value of 11C-methionine PET/CT imaging indiagnosing cerebral glioma[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):161.[doi:10.3760/cma.j.issn.1673-4114.2015.02.013]
[2]刘纯宝,兰晓莉,张永学.粥样硬化易损斑块传统影像与分子影像检测与评价现状[J].国际放射医学核医学杂志,2014,38(2):101.[doi:10.3760/cma.j.issn.1673-4114.2014.02.008]
 Liu Chunbao,Lan Xiaoli,Zhang Yongxue.Current situation of detection and evaluation for atherosclerosis vulnerable plaque by conventional imaging and molecular imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(3):101.[doi:10.3760/cma.j.issn.1673-4114.2014.02.008]
[3]马强,高红林,宋娜玲.下肢深静脉血栓形成的分子影像学进展[J].国际放射医学核医学杂志,2014,38(5):315.[doi:10.3760/cma.j.issn.1673-4114.2014.05.009]
 Ma Qiang,Gao Hong-lin,Song Na-ling.The progress of molecular imaging in deep vein thrombosis[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(3):315.[doi:10.3760/cma.j.issn.1673-4114.2014.05.009]

备注/Memo

备注/Memo:
收稿日期:2016-02-19
基金项目:国家自然科学基金面上项目(81271623)
通讯作者:张永学,Email:zhyx1229@163.com
更新日期/Last Update: 1900-01-01