[1]闵锐.电离辐射生物剂量研究现状[J].国际放射医学核医学杂志,2004,28(3):121-127,145.
 MIN Rui.Current progress in research of ionizing radiation biodosimetry[J].International Journal of Radiation Medicine and Nuclear Medicine,2004,28(3):121-127,145.
点击复制

电离辐射生物剂量研究现状(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
28
期数:
2004年第3期
页码:
121-127,145
栏目:
放射医学
出版日期:
1900-01-01

文章信息/Info

Title:
Current progress in research of ionizing radiation biodosimetry
作者:
闵锐
200433 上海, 第二军医大学放射医学教研室
Author(s):
MIN Rui
Department of Radiation Medicine, Second Military Medical University, Shanghai 200433, China
关键词:
生物剂量计染色体畸变DNA损伤基因表达
Keywords:
biodosimetrychromosome aberrationDNA damagegene expression
分类号:
R144.1
摘要:
生物剂量计有物理剂量计不可替代的优势,其重要性和科学意义已为世界各国放射生物学家所重视。合理正确使用生物剂量计应建立在对其特性充分了解的基础上。本文简述近年来生物剂量计研究和应用的现状。
Abstract:
Biodosimetry has the advantages that can not be completely replaced by physical dosimetry. Its significance and scientific sense has aroused more attention of the radiobiologists in all over the world. It was showed that optimizing and correcting use of biodosimetry in any situa-tion should be set on the base of well understanding to what people used. The progression on the research and application of biodosimetry will be viewed and the criteria of practical biodosimetry will also be raised in the article.

参考文献/References:

[1] Ballarini F and Ottolenghi A. Chromosome aberrations as biomarkers of radiation exposure:modeling basic mechanisms[J]. Adv Space Res, 2003, 31(6):1557-1568.
[2] Duran A, Barquinero JF, Caballin MR, et al. Suitability of FISH painting techniques for the detection of partial body irradiations for biological dosimetry[J]. Radiat Res, 2002, 157(4):461-468.
[3] Camparoto ML, Ramalho AT, Natarajan AT, et al. Translocation analysis by the FISH painting method for retrospective dose reconstruction in individuals exposed to ionizing radiation 10 yearn after exposure[J]. Mutat Res, 2003, 530(1-2):1-7.
[4] Hoffmann W and Schmitz-Feuerhake I. How radiation-specific is dicentric assay?[J]. J Expo Anal Environ Epidemiol, 1999, 9(2):113-133.
[5] Ramalho AT, Costa ML and Oliveira MS. Conventional radiationbiological dosimetry using frequencies of unstable chromosome aberration[J]. Mutat Res, 1998, 404(1-2):97-100.
[6] Pala FS, Moquet JE, Edwards AA, et al. In vitro transmission of chromosomal aberrations through mitosis in human lymphocytes[J].Mutat Res, 2001, 474(1-2):139-146.
[7] Lindholm C. Stable chromosome aberrations among finish nuclear power plant workers[J]. Radiat Prot Dosim, 2001, 93(2):143-150.
[8] Hsieh WA, Lucas JN, Hwang JJ, et al. Biodosimetry using chromosomal translocations measured by FISH in a popula-tion chronically exposed to low dose rate 60Co gamma irradiation[J]. Int J Radiat Biol, 2001, 77(7):797-804.
[9] Tawn EJ and Whitehouse CA. Stable chromosome aberration frequencies in men occupationally exposed to radiation[J]. J Radiol Prot, 2003, 23(4):269-278.
[10] Wojcik A and Streffer C. Comparison of radiation induced aberration frequenciesin chromosome 1 and 2 of two human donors[J]. Int J Radiat Biol, 1998, 74(5):573-581.
[11] Braselmann H, Kulka U, Huber R, et al. Distribution of radiation induced exchange aberrations in all human chromosome[J]. Int J Radiat Biol, 2003, 79(6):393-403.
[12] Luomahaara S, Lindholm C, Mustonen R, et al. Distribution of radiation induced exchange aberrations in human chromosome 1, 2 and 4[J]. Int J Radiat Biol, 1999, 75(12):1551-1556.
[13] Neronova E, Slozina N and Nikiforov A. Chromosome alteration in cleanup wprkers sampled years after the Chernobyl accident[J].Radiat Res, 2003, 160(1):46-51.
[14] Tawn EJ and Whitehouse CA. Persistence of translooation frequencies in blood lymphocytes following radiotherapy:implications for retrospective radiation biodosimetry[J]. J Radiol Prot, 2003, 23(4):423-430.
[15] Pressl S, Edwards A and Stephan G. The influence of age, sex and smoking habits on the background level of FISH detected translocations[J]. Mutat Res, 1999, 442(2):89-95.
[16] Lucas JN, Deng W, Moore D, et al. Background ionizing radiation plays a minor role in the production if chromosome tranalocations in a control population[J]. Int J Radiat Biol, 1999, 75(7):819-827.
[17] Karthikeya-Prabhu B, Venkatachalam P, Paul SF, et al. Comparison of inter-and intra-chromosomal aberrations in blood samlies exposed to different dose rates of gamma radiation[J]. Radiat Prot Dosim, 2003, 103(2):103-109.
[18] Lindholm C, Romm H, Stephan G, et al. Intercomparison of translocation and dicentric frequencies between laboratories in a follow-up of the radiological accident in Estonia[J]. Int J Radiat Biol, 2002,78(10):883-890.
[19] Lloyd DC, Moquet JE, Oram S, et al. Accidental intake of tritiated water:a cytogenetic follow-up case on translooation stability and dose reconstruction[J]. Int J Radiat Riol, 1998, 73(5):543-547.
[20] Pantelias GE and Maillie HD. The use of peripheral blood mononuclear cell prematurely condensed chromosomes for biological dosimetry[J]. Radiat Res, 1984, 99(1):140-150.
[21] Cornforth MN and Bedford JS. Ionizing radiation damage and its early development in chromosome[A]. In:Lett JT, Sin-clair Wk (eds.)[C]. 17 Academic Press, San Diego:Advances in Radiation Biology, 1993. 423-497.
[22] Prasanna PG, Escalada ND, Blakely WF. Induction of premature chromosome condensation by a phosphates inhibitor and a protein kinase in unstimulated human PBL:a simple and rapid technique to study chromosome aberration using specific whole chromosome DNA hybridization probes for biological dosimetry[J].Mutat Res, 2000,466(2):131-141.
[23] Kanda R, Hayata I, Lloyd DC. Easy biodosimetry for high dose radiation exposure using drug induced prematurely condensed chromosome[J]. Int J Radiat Biol, 1999, 75(4):441-446.
[24] Durante M, George K, Yang TC. Biodosimetry of ionizing radiation by selective painting of prematurely condensed chromosomes in human lymphocytes[J]. Radiat Res, 1997,148(5suppl):545-550.
[25] Prasanna PG, Hamel CJ, Escalada ND, et al. Biological dosimetry using human interphase peripheral blood lymphocytes[J]. Mil Med,2002, 167(2 suppl):10-12.
[26] Kirsch-Volders M, Sofuni T, Aavdema M, et al. Report from the in vitro micronucleus assay working group[J]. Mutat Res, 2003, 540(2):153-163.
[27] Thierens H, Vral A, Barbe M, et al. A cytogenetic study of nuclear power plant workers using the micronucleus-centromere assay[J].Mutat Res, 1999, 445(1):105-111.
[28] Mill AJ, Wells J, Hall SC, et al. A micronucleus induced in human lymphocytes:Comparative effects of X rays, alpha particles, beta particles and neutrons and implications for biological dosimetry[J].Radiat Res, 1996, 145(5):575-585.
[29] Paillole N and Voisin P. Is micronuclei yield variabilitya problem for overexposure dose assessment to ionizing radiation?[J]. Mutat Res, 1998, 413(1):47-56.
[30] Catalan J, Autio K, Kuosma E, et al. Age-dependent inclusion of sex chromosomes in lymphocyte micronuclei in man[J]. AmJ Hum Genet, 1998, 63(5):1464-1472.
[31] Vral A, Thierens H, De Ridder L. In vitro micronucleus-centromere assay to detect radiation damage induced by low doses in human lymphocytes[J]. Int J Radiat Biol, 1997, 71(1):61-68.
[32] Garaj-VrhovacV, Kopjar N, Razem D, et al. Application of the alkaline comet assay in biodosimetry:assessment of in vivo DNA damage in human peripheral leukocytes after a gamma radiation incident[J]. Radiat Prot Dosim, 2002, 98(4):407-416.
[33] Gajendiran N, Tanaka K, Kumaravel TS, et al. Neutron induced adaptive response studied in go human lymphocytes using the comet assay[J]. J Radiat Res (Tokyo), 2001, 42(1):91-101.
[34] Lagroye I, Hook GJ, Wettring BA, et al. Measurements of alkalilabile DNA damage and protein-DNA crosslinks after 2450 MHz microwave and low dose gamma irradiation in vitro[J]. Radiat Res,2004, 161(2):201-214.
[35] Wada S, Khoa TV, Kohayashi Y, et al. Detection of radiation induced apoptosis using the comet assay[J]. J Vet Med Sci, 2003, 65(11):1161-1166.
[36] van der Schans GP, Timmerman AJ and Bruijnzeel PL. Detection of single strand breaks and base damage in DNA of human white blood cells as a tool for biological dosimetry of exposure to ionizing radiation[J]. Mil Med, 2002, 167(2 suppl):5-7.
[37] Xing JZ, Lee J, Leadon SA, et al. Imminofluorescence detection of radiation induced DNA base damage[J]. Mil Med, 2002, 167(2 suppl):2-4.
[38] Blakely WF, Miller AC, Luo L, et al. Nucleic acid molecular biomarkers for diagnostic biodosimetry applications:use of the fluorogenic 5’-nuclense polymerase chain reaction assay[J]. Mil Med,2002, 167(2 suppl):16-19.
[39] Fornace AJ Jr, Amundson SA, Do KT, et al. Stress-gene induction by low dose gramma irradiation[J]. Mil Med, 2002, 167(2 suppl):13-15.
[40] Grace MB, Mcleland CB and Blakely WF. Real-time quantitative RT-PCR assay of GADD45 gene expression changes as a biomarker for radiation biodosimetry[J]. Int J Radiat Biol, 2002, 78(11):1011-1021.
[41] Kubota N, Hayashi J, Inada T, et al. Induction of a particular deletion in mitochondrial DNA by X rays depends onthe inherent radiosensitivity of the cells[J]. Radiat Res, 1997, 148(4):395-398.
[42] mundson SA, Do KT, Shahab S, et al. Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation[J]. Radiat Res, 2000, 154(3):342-346.
[43] Jen KY and Cheung VG. Transcriptional response of lymphoblastoid cells to ionizing radiation[J]. C enome Res, 2003, 13(9):2092-2100.
[44] Amundson SA and Bittner M, Meltzer P, et al. Induction of gene expression as a monitor of exposure to ionizing radiation[J]. Radiat Res, 2001, 156(5 Pt2):657-661.
[45] Amundson SA and Fornace AJ Jr. Gene expression profiles for monitoring radiation exposure[J]. Radiat Prot Dosim, 2001, 97(1):11-16.
[46] Sherlock G. Analysis of large-scale gene expression data[J]. Brief Bioinform, 2001, 2(4):350-362.
[47] Amundson SA and Fornace AJ Jr. Monitoring human radiation exposure by gene expression profiling possibilities and pitfalls[J].Health Phys, 2003, 85(1):36-42.
[48] Saenko AS, Zamulaeva IA, Smirnova SG, et al. Determination of somatic mutant frequencies at glycophorin A and T cell receptor loci for biodosimetry of prolonged irradiation[J]. Int J Radiat Biol, 1998,73(6):613-618.
[49] Janet Tawn E, Whitehouse CA, Paul Daniel C, et al. Somatic cell mutations at the glycophorin A locus in erythrocytes of radiation workers from the Sellafield nuclear facility[J]. Radiat Res, 2003,159(1):117-122.
[50] Jones IM, Galick H, Kato P, et al. Three somatic genetic biomarkers and covariates in radiation exposed Russian cleanup workers of the Chernobyl nuclear reactor 6-13 years after exposure[J]. Radiat Res,2002, 158(4):424-442.
[51] Ha M, Yoo KY, Cho SH. Glycophorin A mutant frequency in radiation workers at the nuclear power plants and a hospital[J]. Mutat Res, 2002, 501(1-2):45-56.
[52] Jones IM, Tucker JD, Langlois RG, et al. Evaluation of three somatic genetic biomarkers as indicators of low dose radiation effects in clean-up workers of the Chernobyl nuclear reactor accident[J]. Radiat Prot Dosim 2001, 97(1):61-67.
[53] Thomas CB, Nelson DO, Pleshanov P, et al. Induction and decline of HPRT mutants and deletions following a low dose radiation exposure at Chernobyl[J]. Muta Res, 2002, 499(2):177-187.
[54] Amundson SA, Bittner M, Meltzer P, et al. Biological indicators for the identification of ionizing radiation exposure in humans[J]. Exp Rev Mol Diagn, 2001, 1(2):211-219.
[55] Voisin P, Barquinero F, Blakely B, et al. Towards a standardization of biological dosimetry by cytogenetics[J]. Cell Mol Biol, (Noisylegrand), 2002, 48(5):501-504.

相似文献/References:

[1]施常备,许建林,袁勇,等.染色体畸变率估算32P的辐射剂量[J].国际放射医学核医学杂志,2012,36(1):35.[doi:10.3760/cma.j.issn.1673-4114.2012.01.009]
 SHI Chang-bei,XU Jian-lin,YUAN Yong,et al.The quantitative radiation dose of 32P by chromosomal aberration[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(3):35.[doi:10.3760/cma.j.issn.1673-4114.2012.01.009]
[2]吕玉民,傅宝华,韩林,等.《放射工作人员职业健康检查外周血淋巴细胞染色体畸变检测与评价》解读[J].国际放射医学核医学杂志,2012,36(4):249.[doi:10.3760/cma.j.issn.1673-4114.2012.04.014]
 LÜ,Yu-min,FU Bao-hua,et al.Explanation of Test and Assessment of Chromosomal Aberrations on Occupational Health Examinations for Radiation Workers[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(3):249.[doi:10.3760/cma.j.issn.1673-4114.2012.04.014]
[3]马铁军,王毅,安源,等.多色荧光原位杂交显带技术在高、低传能线密度辐射损伤中的应用[J].国际放射医学核医学杂志,2012,36(3):168.[doi:10.3760/cma.j.issn.1673-4114.2012.03.012]
 MA Tie-jun,WANG Yi,AN Yuan,et al.Multicolour-banding fluorescence in situ hybridisation analysis of radiation damage induced by high- and low-linear energy transfer rays[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(3):168.[doi:10.3760/cma.j.issn.1673-4114.2012.03.012]
[4]刘强,姜恩海,李进,等.SCGE作为辐射生物剂量计的可行性研究[J].国际放射医学核医学杂志,2005,29(3):126.
 LIU Qiang,JIANG En-hai,LI Jin,et al.Study on the possibility of SCGE as radiation biological dosimeter[J].International Journal of Radiation Medicine and Nuclear Medicine,2005,29(3):126.
[5]苏燎原.第二届低和很低剂量电离辐射对人体健康效应国际会议中有关容许剂量的介绍[J].国际放射医学核医学杂志,2003,27(3):144.
 SU Liao-yuan.Report on the permitted dose in international conference of The effects of low and very low doses of ionizing radiation on human health[J].International Journal of Radiation Medicine and Nuclear Medicine,2003,27(3):144.
[6]张泽云,叶常青,金璀珍.航天飞行人员电离辐射的生物剂量估计[J].国际放射医学核医学杂志,1999,23(1):37.
[7]陈振军,王知权,王继先.TCR基因突变分析技术及其在辐射生物学中的应用[J].国际放射医学核医学杂志,1995,19(1):41.
[8]赵晋华,林祥通,苏学良,等.核医学显像的潜在对象——染色体畸变[J].国际放射医学核医学杂志,1996,20(3):116.
[9]陈振军,王继先,刘树铮.HLA-A基因突变分析技术的研究概况[J].国际放射医学核医学杂志,1997,21(1):38.
 [J].International Journal of Radiation Medicine and Nuclear Medicine,1997,21(3):38.
[10]徐永忠,赵经涌,郑斯英,等.HPRT基因突变分析技术及其在放射生物学中的应用[J].国际放射医学核医学杂志,1997,21(3):138.

备注/Memo

备注/Memo:
收稿日期:2004-03-28。
基金项目:国家自然科学基金资助项目(30370444)
更新日期/Last Update: 1900-01-01