[1]赵竞,张占文,马慧,等.PET/CT显像剂18F-氟丙酸在肝癌中的生物学评估[J].国际放射医学核医学杂志,2018,(5):414-419.[doi:10.3760/cma.j.issn.1673-4114.2018.05.005]
 Zhao Jing,Zhang Zhanwen,Ma Hui,et al.Biological evaluation of PET/CT imaging agent 18F-fluoropropionic acid in hepatocellular carcinoma[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(5):414-419.[doi:10.3760/cma.j.issn.1673-4114.2018.05.005]
点击复制

PET/CT显像剂18F-氟丙酸在肝癌中的生物学评估(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
期数:
2018年第5期
页码:
414-419
栏目:
基础研究
出版日期:
2018-10-01

文章信息/Info

Title:
Biological evaluation of PET/CT imaging agent 18F-fluoropropionic acid in hepatocellular carcinoma
作者:
赵竞1 张占文2 马慧3 聂大红4 蒋宁一1 刘生1 唐刚华3
1. 510120 广州, 中山大学孙逸仙纪念医院, 广东省恶性肿瘤表观遗传与基因调控重点实验室/核医学科;
2. 510655 广州, 中山大学附属第六医院核医学科;
3. 510080 广州, 中山大学附属第一医院核医学科;
4. 510080 广州, 中山大学附属第一医院放疗科
Author(s):
Zhao Jing1 Zhang Zhanwen2 Ma Hui3 Nie Dahong4 Jiang Ningyi1 Liu Sheng1 Tang Ganghua3
1. Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation/Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China;
2. Department of Nuclear Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China;
3. Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China;
4. Department of Radiation Oncology, The First Affiliated Hospital, SunYat-sen University, Guangzhou 510080, China
关键词:
肝细胞正电子发射断层显像计算机体层摄影术18F-氟丙酸
Keywords:
Carcinoma hepatocellular Positron emission tomography computed tomography 18F-fluoropropionic acid
DOI:
10.3760/cma.j.issn.1673-4114.2018.05.005
摘要:
目的 探讨PET/CT显像剂18F-氟丙酸(18F-FPA)对肝细胞肝癌(HCC)的显像效果及其摄取机制。方法 (1)以甲基-2-溴丙酸乙酯为前体合成18F-FPA;(2)通过体外细胞摄取实验测定人肝癌SK-Hep 1细胞不同时间点对18F-FPA的放射性摄取情况;观察不同浓度脂肪酸合成酶抑制剂-奥利司他(Orilistat)、乙酰辅酶A羧化酶抑制剂5-十四烷氧基-2-呋喃甲酸(TOFA)对18F-FPA的摄取抑制情况;(3)对荷人肝癌SK-Hep 1小鼠行18F-FPA microPET/CT显像,并与18F-FDG PET/CT显像进行比较。18F-FPA和18F-FDG在肿瘤中的放射性摄取率比较采用t检验。结果 (1)18F-FPA的合成产率为(45±2)%。(2)细胞摄取实验结果显示,人肝癌SK-Hep 1细胞对18F-FPA的摄取率从5 min的(1.3±0.4)%上升到120 min的(4.6±0.2)%。细胞摄取抑制实验结果显示,随着抑制剂浓度的增高,人肝癌SK-Hep 1细胞对18F-FPA的摄取逐渐降低。当抑制剂奥利司他和TOFA浓度均为400 μmol时,人肝癌SK-Hep 1细胞对18F-FPA的摄取率分别降低了(40.3±4.0)%和(26.0±6.0)%。(3)荷人肝癌SK-Hep 1小鼠18F-FPA microPET/CT显像显示了快速且准确的肿瘤定位,肿瘤/肝脏比值为1.63±0.26;18F-FDG PET/CT显像中的肿瘤/肝脏比值为1.09±0.21。18F-FPA比18F-FDG具有更好的显像效果,差异有统计学意义(t=4.055,P=0.047)。结论 18F-FPA可用于肝癌显像,且其摄取与脂肪酸合成有关。
Abstract:
Objective To evaluate the potential of 18F-fluoropropionic acid (18F-FPA) as a PET/CT tracer in the imaging of hepatocellular carcinoma (HCC) and to identify the mechanism underlying 18F-FPA uptake. Methods (1) 18F-FPA was synthesized from the precursor methyl-2-bromopropionate. (2) 18F-FPA uptake by SK-Hep 1 HCC cells was quantified in vitro at different time points. To further investigate the mechanism underlying 18F-FPA uptake, the inhibitory effects of the fatty acid synthase inhibitor Orilistat and the acetyl-CoA carboxylase inhibitor 5-tetradecyloxy-2-furoic acid on 18F-FPA uptake were observed. (3) Micro-PET/CT imaging results for 18F-FPA and 18F-FDG for mouse models of human hepatocellular carcinoma SK-Hep 1 were obtained and compared. Mthe radioactivity uptake ratios of 18F-FDA and 18F-FDG were compared and analyzed with t test. Results (1) 18F-FPA was synthesized with a yield of 45±2% through a simple process. (2) 18F-FPA uptake ratio by SK-Hep 1 cells gradually increased from (1.3±0.4)% after 5 min to (4.6 ±0.2)% after 120 min. In the cell uptake inhibition experiments, 18F-FPA uptake by SK-Hep 1 cells gradually decreased as inhibitor concentration increased. Under Orilistat and TOFA concentrations of 400 μmol, 18F-FPA uptake by SK-Hep 1 cells decreased by (40.3±4.0)% and (26.0±6.0)%, respectively. (3) 18F-FPA showed rapid and accurate tumor localization in mouse models of human hepatocellular carcinoma SK-Hep 1 with a tumor/liver ratio of 1.63±0.26. When used in 18F-FDG PET/CT imaging, the tumor/liver ratio of 18F-FPA reached 1.09±0.21. The imaging results provided by 18F-FPA were superior to those provided by 18F-FDG (t=4.055, P=0.047). Conclusion 18F-FPA can be used as an alternative radiotracer in the detection of hepatocellular carcinoma, its uptake is related to fatty acid synthesis.

参考文献/References:

[1] Sun H, Song T. Hepatocellular carcinoma:Advances in diagnostic imaging[J]. Drug Discov Ther, 2015, 9 (5):310-318. DOI:10.5582/ddt.2015.01058.
[2] Haug AR. Imaging of primary liver tumors with positron-emission tomography[J]. Q J Nucl Med Mol Imaging, 2017, 61 (3):292-300. DOI:10.1053/j.sult.2012.11.006.
[3] Sun DW, An L, Wei F, et al. Prognostic significance of parameters from pretreatment 18F-FDG PET in hepatocellular carcinoma:a meta-analysis[J]. Abdom Radiol (NY), 2016, 41 (1):33-41. DOI:10.1007/s00261-015-0603-9.
[4] Deford-Watts L M, Mintz A, Kridel S J. The potential of 11C-acetate PET for monitoring the Fatty acid synthesis pathway in Tumors[J]. Curr Pharm Biotechnol, 2013, 14 (3):300-312. DOI:10.2174/1389201011314030006.
[5] Grassi I, Nanni C, Allegri V, et al. The clinical use of PET with 11C-acetate[J]. Am J Nucl Med Mol Imaging, 2012, 2 (1):33-47.
[6] Schiepers C, Huang SC, Dahlbom M. Dynamic PET/CT with 11C-acetate in prostate cancer[J]. J Nucl Med, 2013, 54 (2):326. DOI:10.2967/jnumed.112.112532.
[7] Ponde DE, Dence CS, Oyama N, et al. 18F-fluoroacetate:a potential acetate analog for prostate tumor imaging-in vivo evaluation of 18F-fluoroacetate versus 11C-acetate[J]. J Nucl Med, 2007, 48 (3):420-428.
[8] Wang H, Tang G, Hu K, et al. Comparison of three 18F-labeled carboxylic acids with 18F-FDG of the differentiation tumor from inflammation in model mice[J]. BMC Med Imaging, 2016, 16:2. DOI:10.1186/s12880-016-0110-7.
[9] Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis[J]. Nat Rev Cancer, 2007, 7 (10):763-777. DOI:10.1038/nrc2222.
[10] Calvisi DF, Wang C, Ho C, et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma[J]. Gastroenterology, 2011, 140 (3):1071-1083. DOI:10.1053/j.gastro.2010.12.006.
[11] Brogsitter C, Zophel K, Kotzerke J. 18F-Choline, 11C-choline and 11C-acetate PET/CT:comparative analysis for imaging prostate cancer patients[J]. Eur J Nucl Med Mol Imaging, 2013, 40 (Suppl 1):S18-27. DOI:10.1007/s00259-013-2358-2.
[12] Yamamoto Y, Nishiyama Y, Kameyama R, et al. Detection of hepatocellular carcinoma using 11C-choline PET:comparison with 18F-FDG PET[J]. J Nucl Med, 2008, 49 (8):1245-1248. DOI:10.2967/jnumed.108.052639.
[13] Yoshii Y, Furukawa T, Oyama N, et al. Fatty acid synthase is a key target in multiple essential tumor functions of prostate cancer:uptake of radiolabeled acetate as a predictor of the targeted therapy outcome[J/OL]. Plos one, 2013, 8 (5):e64570[2018-05-22]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064570. DOI:10.1371/journal.pone.0064570.
[14] Kornberg A, Küpper B, Thrum K, et al. Increased 18F-FDG Uptake of hepatocellular carcinoma on positron emission tomography independently predicts tumor recurrence in liver transplant patients[J]. Transplantat Proc, 2009, 41 (6):2561-2563. DOI:10.1016/j.transproceed.2009.06.115.
[15] Dang YH, Cai J, Li X, et al. Imaging Potential and Biodistribution in vivo of 2-[18F]Fluoropropionic Acid in Breast Cancer-bearing Mice[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2015, 37 (3):320-324.DOI:10.3881/j.issn.1000-503X.2015.03.014.
[16] Pillarsetty N, Punzalan B, Larson SM. 2-18F-Fluoropropionic Acid as a PET Imaging Agent for Prostate Cancer[J]. J Nucl Med, 2009, 50 (10):1709-1714. DOI:10.2967/jnumed.109.064212.
[17] 张占文,胡平,唐刚华. 肿瘤短链脂肪酸代谢PET显像剂研究进展[J]. 国际放射医学核医学杂志, 2017, 41 (6):430-436. DOI:10.3760/cma.j.issn.1673-4114.2017.06.009. Zhang ZW, Hu P, Tang GH. Progress on short-chain fatty acid tumor molecular probes for PET imaging[J]. Int J Radiat Med Nucl Med, 2017, 41 (6):430-436.
[18] Wehrle JP, Ng CE, McGovern KA, et al. Metabolism of alternative substrates and the bioenergetic status of EMT6 tumor cell spheroids[J]. NMR Biomed, 2000, 13 (6):349-360. DOI:10.1002/ijc.23835.
[19] Ricks CA, Cook RM. Regulation of volatile fatty acid uptake by mitochondrial acyl CoA synthetases of bovine liver[J]. J Dairy Sci, 1981, 64 (12):2324-2335.
[20] Carvalho MA, Zecchin KG, Seguin F, et al. Fatty acid synthase inhibition with Orlistat promotes apoptosis and reduces cell growth and lymph node metastasis in a mouse melanoma model[J]. Int J Cancer, 2008,123 (11):2557-2565. DOI:10.1002/IJC.23835.
[21] Wysham WZ, Roque DR, Han J, et al. Effects of Fatty Acid Synthase Inhibition by Orlistat on Proliferation of Endometrial Cancer Cell Lines[J]. Target Oncol, 2016, 11 (6):763-769. DOI:10.1007/s11523-016-0442-9.
[22] Ricks CA, Cook RM. Regulation of volatile fatty acid uptake by mitochondrial acyl CoA synthetases of bovine liver[J]. J Dairy Sci, 1981, 64 (12):2324-2335. DOI:10.3168/jds.S0022-0302 (81)82854-8.
[23] Wysham WZ, Roque DR, Han J, et al. Effects of Fatty Acid Synthase Inhibition by Orlistat on Proliferation of Endometrial Cancer Cell Lines[J]. Target Oncol, 2016, 11 (6):763-769. DOI:10.1007/s11523-016-0442-9.
[24] Xiao X, Liu H, Li X. Orlistat treatment induces apoptosis and arrests cell cycle in HSC-3 oral cancer cells[J]. Microb Pathog, 2017,112:15-19. DOI:10.1016/j.micpath.2017.09.001.
[25] Sokolowska E, Presler M, Goyke E, et al. Orlistat Reduces Proliferation and Enhances Apoptosis in Human Pancreatic Cancer Cells (PANC-1)[J]. Anticancer Res, 2017, 37 (11):6321-6327. DOI:10.21873/anticanres.12083.
[26] Li S, Qiu L, Wu B, et al. TOFA suppresses ovarian cancer cell growth in vitro and in vivo[J]. Mol Med Rep, 2013, 8 (2):373-378. DOI:10.3892/mmr.2013.1505.
[27] Guseva NV, Rokhlin OW, Glover RA, et al. TOFA (5-tetradecyl-oxy-2-furoic acid) reduces fatty acid synthesis, inhibits expression of AR, neuropilin-1 and Mcl-1 and kills prostate cancer cells independent of p53 status[J]. Cancer Biol Ther, 2011, 12 (1):80-85. DOI:10.4161/cbt.12.1.15721.

相似文献/References:

[1]李景涛,邓垒,张文珏,等.广泛期小细胞肺癌胸部IMRT后发生放射性肺炎的危险因素分析[J].国际放射医学核医学杂志,2016,40(2):100.[doi:10.3760/cma.j.issn.1673-4114.2016.02.003]
 Li Jingtao,Deng Lei,Zhang Wenjue,et al.Risk factor analysis for predicting radiation pneumonitis in extensive stage small cell lung cancer patients receiving IMRT thoracic radiotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):100.[doi:10.3760/cma.j.issn.1673-4114.2016.02.003]
[2]张毓艺,姚稚明.18F-FDG PET/CT对非小细胞肺癌淋巴结分期诊断价值的研究进展[J].国际放射医学核医学杂志,2016,40(6):447.[doi:10.3760/cma.j.issn.1673-4114.2016.06.009]
 Zhang Yuyi,Yao Zhiming.The progress of 18F-FDG PET/CT in the diagnosis of N-staging of non-small cell lung cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):447.[doi:10.3760/cma.j.issn.1673-4114.2016.06.009]
[3]李欢欢,李素平,游金辉.小细胞肺癌伴副肿瘤综合征患者骨显像示肌肉摄取一例[J].国际放射医学核医学杂志,2014,38(2):140.[doi:10.3760/cma.j.issn.1673-4114.2014.02.016]
[4]戈畅,梁硕.化疗联合DC-CIK生物治疗非小细胞肺癌的临床价值及CT灌注成像的疗效评价[J].国际放射医学核医学杂志,2014,38(6):377.[doi:10.3760/cma.j.issn.1673-4114.2014.06.007]
 Ge Chang,Liang Shuo.The clinical value and CT perfusion evaluation in chemotherapy combined with DC-CIK biological treatment of non-small cell lung cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(5):377.[doi:10.3760/cma.j.issn.1673-4114.2014.06.007]
[5]黄少祥,樊体强.塞来昔布对非小细胞肺癌移植瘤的辐射增敏实验研究[J].国际放射医学核医学杂志,2013,37(3):150.[doi:10.3760/cma.j.issn.1673-4114.2013.03.006]
 HUANG Shao-xiang,FAN Ti-qiang.Radiosensitization on non-small cell lung cancer induced by celecoxib[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(5):150.[doi:10.3760/cma.j.issn.1673-4114.2013.03.006]
[6]龙再颖,汤春静,于立明,等.甲状腺乳头状癌术后刺激状态Tg与颈部淋巴结转移关系的研究[J].国际放射医学核医学杂志,2013,37(1):27.[doi:10.3760/cma.j.issn.1673-4114.2013.01.008]
 LONG Zai-ying,TANG Chun-jing,YU Li-ming,et al.The correlation between the stimulated thyroglobulin level after surgery in papillary thyroid carcinoma and cervical lymph node metastasis[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(5):27.[doi:10.3760/cma.j.issn.1673-4114.2013.01.008]
[7]于丽娟,李迎辞,王文志,等.PET-CT及PET-CT结合Lung VCAR软件对非小细胞肺癌肺门区淋巴结的诊断分析[J].国际放射医学核医学杂志,2012,36(6):323.[doi:10.3760/cma.j.issn.1673-4114.2012.06.002]
 YU Li-juan,LI Ying-ci,WANG Wen-zhi,et al.Value of PET-CT and PET-CT combined with Lung VCAR software in the diagnosis of hilar area lymph nodes of non-small cell lung cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(5):323.[doi:10.3760/cma.j.issn.1673-4114.2012.06.002]
[8]刘莉,杨景魁.125I粒子植入治疗非小细胞肺癌的护理及辐射防护[J].国际放射医学核医学杂志,2012,36(3):172.[doi:10.3760/cma.j.issn.1673-4114.2012.03.013]
 LIU Li,YANG Jing-kui.Radiation protective nursing intervene of 125I seed implantation in non-small cell lung cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(5):172.[doi:10.3760/cma.j.issn.1673-4114.2012.03.013]
[9]朱晓琳,李强.肝腺瘤的影像诊断现状及进展[J].国际放射医学核医学杂志,2011,35(2):124.[doi:10.3760/cma.j.issn.1673-4114.2011.02.014]
 ZHU Xiao-lin,LI Qiang.Status and advances in imaging diagnsis of hepatic adenoma[J].International Journal of Radiation Medicine and Nuclear Medicine,2011,35(5):124.[doi:10.3760/cma.j.issn.1673-4114.2011.02.014]
[10]梁吉祥,柴树德,郑广钧,等.CT引导下植入125I粒子治疗非小细胞肺癌切除术后局部复发的疗效[J].国际放射医学核医学杂志,2011,35(3):181.[doi:10.3760/cma.j.issn.1673-4114.2011.03.012]
 LIANG Ji-xiang,CHAI Shu-de,ZHENG Guang-jun,et al.CT-guided percutaneous interstitial implantation of 125I for recurrent patients of postoperative non-small cell lung carcinoma[J].International Journal of Radiation Medicine and Nuclear Medicine,2011,35(5):181.[doi:10.3760/cma.j.issn.1673-4114.2011.03.012]
[11]万绪明,许祖闪,侯红军.磁共振表观弥散系数变化率对肝细胞肝癌患者单次TACE术后疗效评价的应用价值[J].国际放射医学核医学杂志,2015,39(2):129.[doi:10.3760/cma.j.issn.1673-4114.2015.02.006]
 Wan Xuming,Xu Zushan,Hou Hongjun.Applieation value of the change ratio of apparent diffusion coefficient in the therapeutic evaluation of hepatocellular carcinoma treated by single transcatheter arterial chemoembolization[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(5):129.[doi:10.3760/cma.j.issn.1673-4114.2015.02.006]
[12]王振光,王洋洋.PET/CT显像在肝细胞肝癌诊断中的研究进展[J].国际放射医学核医学杂志,2015,39(2):175.[doi:10.3760/cma.j.issn.1673-4114.2015.02.016]
 Wang Zhenguang,Wang Yangyang.The development of PET/CT imaging in the diagnosis of hepatocellular carcinoma[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(5):175.[doi:10.3760/cma.j.issn.1673-4114.2015.02.016]
[13]张一秋,石洪成.肝细胞癌肿瘤新生血管影像学评价的研究进展[J].国际放射医学核医学杂志,2013,37(1):60.[doi:10.3760/cma.j.issn.1673-4114.2013.01.015]
 ZHANG Yi-qiu,SHI Hong-cheng.Advances in assessment of imaging examination for tumor neoangiogenesis induced by hepatocellular carcinoma[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(5):60.[doi:10.3760/cma.j.issn.1673-4114.2013.01.015]
[14]李红兵,陈勇,曾建国,等.肝动脉化疗性栓塞结合Ⅱ期手术切除治疗巨块型外生型肝癌[J].国际放射医学核医学杂志,2010,34(1):49.[doi:10.3760/cma.j.issn.1673-4114.2010.01.013]
 LI Hong-bing,CHEN Yong,ZENG Jian-guo,et al.Treatment of massive extrahepatic growing hepatocellular carcinoma with TACE in combination with secondary resection[J].International Journal of Radiation Medicine and Nuclear Medicine,2010,34(5):49.[doi:10.3760/cma.j.issn.1673-4114.2010.01.013]
[15]郑磊,李前伟.18F-氟脱氧葡萄糖PET在原发陛肝细胞癌中的应用[J].国际放射医学核医学杂志,2008,32(1):23.
 ZHENG Lei,LI Qian-wei.Application of positron emission tomography with 18F-fluorodeoxyglucose in hepatocellular carcinoma[J].International Journal of Radiation Medicine and Nuclear Medicine,2008,32(5):23.
[16]周云,刘璐,宋进华.经肝动脉灌注90Y微球治疗肝癌的研究进展[J].国际放射医学核医学杂志,2006,30(6):321.
 ZHOU Yun,LIU Lu,SONG Jin-hua.Clinical researched progress of intra-arterial radioembolization with 90Y-glass microspheres for treatment of hepatocellular carcinoma[J].International Journal of Radiation Medicine and Nuclear Medicine,2006,30(5):321.
[17]麻广宇,刘家金,徐白萱,等.11C-乙酸盐PET/CT显像在中、高分化肝细胞肝癌复发与转移监测中的应用研究[J].国际放射医学核医学杂志,2018,(4):312.[doi:10.3760/cma.j.issn.1673-4114.2018.04.004]
 Ma Guangyu,Liu Jiajin,Xu Baixuan,et al.Application of 11C-acetate PET/CT imaging in the detection of recurrence and metastasis of hepatocellular carcinoma with intermediate and high differentiation[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(5):312.[doi:10.3760/cma.j.issn.1673-4114.2018.04.004]
[18]陈佩和,徐文贵,李小凤,等.肝细胞肝癌的葡萄糖代谢机制及在PET显像中的应用价值[J].国际放射医学核医学杂志,2018,(6):547.[doi:10.3760/cma.j.issn.1673-4114.2018.06.013]
 Chen Peihe,Xu Wengui,Li Xiaofeng,et al.Glycometabolism mechanism in hepatocellular carcinoma and its application in PET[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(5):547.[doi:10.3760/cma.j.issn.1673-4114.2018.06.013]

备注/Memo

备注/Memo:
收稿日期:2018-05-23。
基金项目:国家自然科学基金(81671719、81571704);广东省科技计划基金(2016B090920087、2013B021800264);广州市科技计划基金(201604020169、201510010145)
通讯作者:刘生,Email:liusheng_gz@126.com;唐刚华,Email:gtang0224@126.com
更新日期/Last Update: 2018-10-01