[1]郝玉美,贺欣,宋娜玲.靶向肿瘤新生血管整合素αvβ3受体显像研究现状及进展[J].国际放射医学核医学杂志,2014,38(3):179-184.[doi:10.3760/cma.j.issn.1673-4114.2014.03.010]
 Hao Yumei,He Xin,Song Naling.Progress on tumor angiogenesis imaging targeting integrin αvβ3 receptor[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(3):179-184.[doi:10.3760/cma.j.issn.1673-4114.2014.03.010]
点击复制

靶向肿瘤新生血管整合素αvβ3受体显像研究现状及进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
38
期数:
2014年第3期
页码:
179-184
栏目:
出版日期:
2014-05-25

文章信息/Info

Title:
Progress on tumor angiogenesis imaging targeting integrin αvβ3 receptor
作者:
郝玉美 贺欣 宋娜玲
300192 天津, 北京协和医学院中国医学科学院放射医学研究所, 天津市放射医学与分子核医学重点实验室
Author(s):
Hao Yumei He Xin Song Naling
Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
关键词:
新生血管化病理性整合素αvβ3放射性核素显像
Keywords:
NeovascularizationpathologicIntegrin αvβ3Radionuclide imaging
DOI:
10.3760/cma.j.issn.1673-4114.2014.03.010
摘要:
恶性肿瘤的生长和转移依赖于肿瘤血管新生,研究发现整合素αvβ3高表达于肿瘤新生血管内皮细胞和部分肿瘤细胞表面,可通过介导细胞粘附来调控肿瘤血管新生,而整合素αvβ3在正常血管和组织表面不表达或呈低水平表达,据此可将其用作肿瘤新生血管显像和治疗的新靶点。近年来国内外关于整合素αvβ3靶向药物的设计、放射性核素的选择以及此类药物的最新研究内容有了较大进展,笔者将对如何更好地设计整合素αvβ3靶向药物、选择合适的放射性核素以及此类药物的研究方向进行综述。
Abstract:
Malignant tumors’growth and metastasis depend on tumor angiogenesis.Recent studies had found that the integrin αvβ3 had a high expression on the surface of tumor angiogenesis endothelial cells and parts of the tumor cells,it can regulate tumor angiogenesis by cell adhesion,but it does not ex-press on the surface of normal blood vessels or the normal organizations,or only had a low level expression.Thus it can be used as a new target for the tumor angiogenesis imaging and treatment.Recent years,there is a great progress on the design of the integrin αvβ3 targeting agents,the selection of radionuclides,and the latest research on the agents at home and abroad.This article will made a review on how to better design the integrin αvβ3 agents,choose the appropriate radionuclides,and the research direction of these agents.

参考文献/References:

[1] Liu S.Radiolabeled cyclic RGD peptides as integrin αvβ3-targeted radiotracers:maximizing binding affinity via bivalency[J].Biocon-jug Chem,2009,20(12):2199-2213.
[2] Herrmann K,Erkan M,Dobritz M,et al.Comparison of 3’-deoxy-3’-[18F]fluorothymidine positron emission tomography (FLT PET) and FDG PET/CT for the detection and characterization of pancreatic tumours[J].Eur J Nucl Med Mol Imaging,2012,39(5):846-851.
[3] Folkman J.Tumor angiogenesis:therapeutic implications[J].N Engl Med,1971,285(21):1182-1186.
[4] Hu XD,Xing LG,Yu JM.Nuclear medical molecular imaging of tu-mor angiogenesis:current status and future prospects[J].Chin Med J (Engl),2013,126(14):2741-2746.
[5] 刘开元,李前伟,刘广元.放射性标记RGD序列多肽与整合素αvβ3受体显像的研究进展[J].医学综述,2006,12(12):757-759.
[6] Max R,Gerritsen RR,Nooijen PT,et al.Immunohistochemical analysis of integrin αvβ3 expression on tumor-associated vessels of human carcinomas[J].Int J Cancer,1997,71(3):320-324.
[7] 王浩,施培基,周晓靓,等.RGD肽及其衍生物在肿瘤显像剂治疗中的研究进展[J].国际放射医学核医学杂志,2007,31(5):274-277.
[8] 邵国强,王自正.整合素αvβ3受体靶向肿瘤显像研究进展[J].国际放射医学核医学杂志,2014,38(1):33-36.
[9] Yu YP,Wang Q,Liu YC,et al.Molecular basis for the targeted binding of RGD-containing peptide to integrin alphaVbeta3[J].Biomaterials,2014,35(5):1667-1675.
[10] Alam IS,Witney TH,Tomasi G,et al.Radiolabeled RGD Tracer Kinetics Annotates Differential αvβ3 Integrin Expression Linked to Cell Intrinsic and Vessel Expression[J/OL].Mol Imaging Biol,2013[2014-03-20].http://link.springer.com/article/10.1007%2Fs11307-013-0710-3. [published online ahead of print Dec 6,2013].
[11] Oxboel J,Brandt-Larsen M,Schjoeth-Eskesen C,et al.Comparison of two new angiogenesis PET tracers 68Ga-NODAGA-E[c (RGDyK)]2 and 64Cu-NODAGA-E[c (RGDyK)]2;in vivo imaging studies in hu-man xenograft tumors[J].Nucl Med Biol,2014,41(3):259-267.
[12] Maschauer S,Haubner R,Kuwert T,et al.18F-Glyco-RGD Peptides for PET Imaging of Integrin Expression:Efficient Radiosynthesis by Click Chemistry and Modulation of Biodistribution by Glycosyla-tion[J].Mol Pharm,2014,11(2):505-515.
[13] Jin ZH,Furukawa T,Sogawa C,et al.PET imaging and biodistribu-tion analysis of the effects of succinylated gelatin combined with Llysine on renal uptake and retention of Cu-cyclam-RAFT-c (-RGDfK-) in vivo[J].Eur J Pharm Biopharm,2013,86(3):478-486.
[14] Liu ZF,Niu G,Shi J,et al.68Ga-labeled cyclic RGD dimmers with Gly3 and PEG4 linkers:promising agents for tumor integrin αvβ3 PET imaging[J].Eur J Nucl Med Mol Imaging,2009,36(6):947-957.
[15] Jamous M,Haberkorn U,Mier W.Synthesis of peptide radiophar-maceuticals for the therapy and diagnosis of tumor diseases[J].Molecules,2013,18(3):3379-3409.
[16] Lewis MR,Kao JY,Anderson AL,el al.An improved method for conjugating monoclonal antibodies with N-hydroxysulfosuccin-imidyl DOTA[J].Bioconjug Chem,2001,12(2):320-324.
[17] Zhang Y,Hong H,Engle JW,et al.Positron emission tomography imaging of CD105 expression with a 64Cu-labeled monoclonal anti-body:NOTA is superior to DOTA[J/OL].PloS One,2011,6(12):e28005[2014-03-20].http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0028005.
[18] Yapp DT,Ferreira CL,Gill RK,et al.Imaging tumor vasculature noninvasively with positron emission tomography and RGD pep-tides labeled with copper 64 using the bifunctonal chelates DOTA,oxo-DO3a.and PCTA[J].Mol Imaging,2013,12(4):263-272.
[19] 王荣福,李险峰,王强.SPECT/CT的最新应用进展[J].CT理论与应用研究,2012,21(3):577-582.
[20] 张春丽,杨铭,王荣福.RGD肽与整合素αvβ3受体结合的构效关系及放射性标记配体的设计[J].肿瘤学杂志,2009,15(1):76-81.
[21] Beer A J,Lorenzen S,Metz S,et al.Comparison of integrin αVβ3 ex-pression and glucose metabolism in primary and metastatic lesions in cancer patients:a PET study using 18F-galacto-RGD and 18F-FDG[J].J Nucl Med,2008,49(1):22-29.
[22] Sugiura G,Kuhn H,Sauter M,et al.Radiolabeling strategies for tu-mor-targeting proteinaceous drugs[J].Molecules,2014,19(2):2135-2165.
[23] Zhu Z,Yin Y,Zheng K,et al.Evaluation of synovial angiogenesis in patients with rheumatoid arthritis using 68Ga-PRGD2 PET/CT:a prospective proof-of-concept cohort study[J].Ann Rheum Dis,2014,73(6):1269-1272.
[24] Trajkovic-Arsic M,Mohajerani P,Sarantopoulos A,et al.Multi-modal molecular imaging of integrin αvβ3 for in vivo detection of pancreatic cancer[J].J Nucl Med,2014,55(3):446-451.
[25] Durkan K,Jiang Z,Rold T L,et al.A heterodimeric[RGD-Glu-64[Cu-NO2A]-6-Ahx-RM2] αvβ3/GRPr-targeting antagonist radio-tracer for PET imaging of prostate tumors[J].Nucl Med Biol,2014,41(2):133-139.
[26] Shallal HM,Minn I,Banerjee SR,et al.Heterobivalent agents tar-geting PSMA and integrin-αvβ3[J].Bioconjug Chem,2014,25(2):393-405.
[27] Rangger C,Helbok A,Sosabowski J,et al.Tumor targeting and imaging with dual-peptide conjugated multifunctional liposomal nanoparticles[J].Int J Nanomedicine,2013,8:4659-4671.
[28] Debergh I,Van Damme N,De Naeyer D,et al.Molecular imaging of tumor-associated angiogenesis using a novel magnetic resonance imaging contrast agent targeting alphabeta integrin[J].Ann Surg Oncol,2013,21(6):2097-2104.
[29] Ma Q,Ji B,Jia B,et al.Differential diagnosis of solitary pulmonary nodules using 99mTc-3PI4-RGDF scintigraphy[J].Eur J Nucl Med Mol Imaging,2011,38(12):2145-2152.
[30] Zhao D,Jin X,Li F,et al.Integrin αvβ3 Imaging of Radioactive Iodine-Refractory Thyroid Cancer Using 99mTc-3PRGD2[J].J Nucl Med,2012,53(12):1872-1877.
[31] Zhu Z,Miao W,Li Q,et al.99mTc-3PRGD2 for integrin receptor imaging of lung cancer:a multicenter study[J].J Nucl Med,2012,53(5):716-722.
[32] Shi J,Fan D,Dong C,et al.Anti-tumor effect of integrin targeted 177Lu-3PRGD2 and combined therapy with endostar[J].Theranos-tics,2014,4(3):256-266.
[33] 贺欣,赵启仁,宋娜玲,等.肿瘤抑素T7肽及其衍生物T7-NGR载体构建及表达[J].生物工程,2008,12(3):240-244.
[34] 郝玉美,贺欣,周晓靓,等.99mTc标记T7肽及其在裸鼠非小细胞肺癌模型体内的生物分布研究[J].中国肺癌杂志,2014,17(3):189-196.

相似文献/References:

[1]夏俊勇,王火强.以血管内皮生长因子及其受体为靶向的肺癌放射性核素显像[J].国际放射医学核医学杂志,2008,32(2):82.
 XIA Jun-yong,WANG Huo-qiang.Lung cancer radionuclide imaging targeting at vascular endothelial growth factor and its receptor[J].International Journal of Radiation Medicine and Nuclear Medicine,2008,32(3):82.
[2]黄建敏,解朋,刘晓梅,等.以整合素αvβ3为靶点的肿瘤分子显像及靶向治疗[J].国际放射医学核医学杂志,2015,39(3):256.[doi:10.3760/cma.j.issn.1673-4114.2015.03.015]
 Huang Jianmin,Xie Peng,Liu Xiaomei,et al.Integrins αvβ3 in molecular imaging and targeted therapy of neoplasms[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):256.[doi:10.3760/cma.j.issn.1673-4114.2015.03.015]
[3]张一秋,石洪成.肝细胞癌肿瘤新生血管影像学评价的研究进展[J].国际放射医学核医学杂志,2013,37(1):60.[doi:10.3760/cma.j.issn.1673-4114.2013.01.015]
 ZHANG Yi-qiu,SHI Hong-cheng.Advances in assessment of imaging examination for tumor neoangiogenesis induced by hepatocellular carcinoma[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(3):60.[doi:10.3760/cma.j.issn.1673-4114.2013.01.015]
[4]陈敏,魏玲格,刘晓梅.肿瘤血管生成的分子影像学研究进展[J].国际放射医学核医学杂志,2012,36(2):65.[doi:10.3760/cma.j.issn.1673-4114.2012.02.001]
 CHEN Min,WEI Ling-ge,LIU Xiao-mei.Advances of molecular imaging in tumor angiogenesis[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(3):65.[doi:10.3760/cma.j.issn.1673-4114.2012.02.001]
[5]付彤,瞿卫,王峰.CDl3/氨基肽酶N在新生血管成像中的应用价值[J].国际放射医学核医学杂志,2011,35(6):321.[doi:10.3760,cma.j.issn.1673-4114.2011.06.001]
 FU Tong,Qu Wei,WANG Feng.The application of CDl3/aminopeptidase N in the angiogenesis imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2011,35(3):321.[doi:10.3760,cma.j.issn.1673-4114.2011.06.001]
[6]潘秀花,杨占山.促血管生成素的功能及应用进展[J].国际放射医学核医学杂志,2006,30(1):53.
 PAN Xiu-hua,YANG Zhan-shan.The progress of the function and application about angiopoietion[J].International Journal of Radiation Medicine and Nuclear Medicine,2006,30(3):53.

备注/Memo

备注/Memo:
收稿日期:2014-03-20。
基金项目:国家自然科学基金(30970851);北京协和医学院协和青年科研基金(2012J06);中国医学科学院放射医学研究所发展基金(SF1306);中国医学科学院放射医学研究所探索基金(ST1313)
通讯作者:贺欣,Email:saluoo@163.com;宋娜玲,Email:nalingsong@sina.com
更新日期/Last Update: 1900-01-01