[1]甘红梅,乔晋萍,孔爱英,等.正电子放射性显像剂代谢及其研究方法进展[J].国际放射医学核医学杂志,2010,34(2):65-72.[doi:10.3760/cma.j.issn.1673-4114.2010.02.001]
 GAN Hong-mei,QIAO Jin-ping,KONG Ai-ying,et al.The progress on researching method and metabolism of positron radiopharmaceutical[J].International Journal of Radiation Medicine and Nuclear Medicine,2010,34(2):65-72.[doi:10.3760/cma.j.issn.1673-4114.2010.02.001]
点击复制

正电子放射性显像剂代谢及其研究方法进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
34
期数:
2010年第2期
页码:
65-72
栏目:
实验核医学
出版日期:
1900-01-01

文章信息/Info

Title:
The progress on researching method and metabolism of positron radiopharmaceutical
作者:
甘红梅1 乔晋萍1 孔爱英2 朱霖1
1. 北京师范大学化学学院放射性药物教育部重点实验室, 100875;
2. 总后卫生部药品仪器检验所, 北京, 100071
Author(s):
GAN Hong-mei1 QIAO Jin-ping1 KONG Ai-ying2 ZHU Lin1
Key Laboratory of Radiopharmaceuticals Ministry of Education Beijing Normal University, College of Chemistry Beijing Normal University, Beijing 100875, China
关键词:
正电子发射断层显像术放射性药物生物转化药物代谢
Keywords:
Positron-emission tomographyRadiopharmaceuticalsBiotransformationMetabolism
DOI:
10.3760/cma.j.issn.1673-4114.2010.02.001
摘要:
正电子放射性显像剂主要用于PET的研究,能在分子水平上反映细胞代谢、细胞受体活性、细胞核内的核酸合成以及细胞基因的改变,在临床疾病诊断和治疗中有重要的地位和作用。PET显像剂进入生物体内后会发生代谢转化,了解PET显像剂的代谢途径和转化过程,对于准确分析和解释显像结果及设计开发新型PET显像剂非常重要。该文总结了目前PET显像剂代谢研究的现状,并对PET显像剂代谢研究方法以及分析技术等进行了综述。
Abstract:
Positron radiopharmaceuticals are mainly used for PET studies, which are used in the field of nuclear medicine as tracers in the diagnosis and treatment of many diseases. They have important position and fuction in the clinical diagnosis and treatment. Metabolism or biotransformation will happen when PET radiopharmaceuticals enter into the body. Understanding the metabolic fate of radio-pharmaceutical probes is essential for an accurate analysis and interpretation of positron emission tomography imaging. The recent research progress on PET radiopharmaceuticals metabolism was reviewed in this paper, including the metabolism characteristics, research methods, analytical techniques and soon.

参考文献/References:

[1] 顾蔚萍,朱霖.中国放射性药物发展战略研究.北京:原子能出版社,2006:16-18.
[2] 王荣福.放射性正电子药物在肿瘤中的应用研究.实用肿瘤杂志,2006,21(1):92-94.
[3] Mullani NA,Herbst RS,O’Neil RG,et al.Tumor blood flow measured by PET dynamic imaging of first-pass 18F-FDG up-take:a comparison with 15O-labeled water-measured blood flow.J Nucl Med,2008,49(4):517-523.
[4] Ryu EK,Choe YS,Kim DH,et al.In vitro metabolism studies of 18F-labeled 1-phenylpiperazine using mouse liver S9 fraction.Nucl Med Biol,2006,33(2):165-172.
[5] Tan PZ,Baldwin RM,Van Dyck CH,et al.Characterization of radioactive metabolites of 5-HT2A receptor PET ligand 18F-altanserin in human and rodent.Nucl Med Biol,1999,26(6):601-608.
[6] Shetty HU,Zoghbi SS,Liow JS,et al.Identification and regional distribution in rat brain of radiometabolites of the dopamine transporter PET radioligand 11C-PE2I.Eur J Nucl Med Mol Imaging,2007,34(5):667-678.
[7] Yang W,Mou T,Peng C,et al.Fluorine-18 labeled galactosyl-neogly-coalbumin for imaging the hepatic asialoglycoprotein receptor.Bioorg Med Chem,2009,17(21):7510-7516.
[8] Lucatelli C,Honer M,Salazar JF,et al.Synthesis,radiolabeling,in vitro and in vivo evaluation of 18F-FPECMO as a positron emission tomography radioligand for imaging the metabotropic glutamate receptor subtype 5.Nucl Med Biol,2009,36(6):613-622,
[9] McCarron J,Zoghbi SS,Shetty HU,et al,Synthesis and initial evaluation of 11C-(R)-RWAY in monkey-a new,simply labeled antagonist radioligand for imaging brain 5-HT1A receptors with PET.Eur J Nucl Med Mol Imaging,2007,34(10):1670-1682.
[10] Osman S,Lundkvist C,Pike VW,et al.Characterisation of the appearance of radioactive metabolites in monkey and human plasma from the 5-HT1A receptor radioligand radioligand,[carbony-11C] WAY-100635-explanation of high signal contrast in PET and an aid to biomathe-matical modelling.Nucl Med Biol,1998,25(3):215-223.
[11] Watabe H,Channing MA,Der MG,et al.Kinetic analysis of the 5-HT2A ligand 11C-MDL 100,907.J Cereb Blood Flow Metab,2000,20(6):899-909.
[12] Stringer RA,Strain-Damerell C,Nicklin P,et al.Evaluation of recombinant cytochrome P450 enzymes as an in vitro system for metabolic clearance predictions.Drug Metab Dispos,2009,37(5):1025-1034.
[13] Tang JC,Yang H,Song XY,et al.Inhibition of cytochrome P450 enzymes by rhein in rat liver microsomes.Phytother Res,2009,23(2):159-164.
[14] Shaffer CL,Langer CS.Metabolism of a 14C/3H-labeled GABAA receptor partial agonist in rat,dog and human liver microsomes:evaluation of a dual-radiolabel strategy.J Pharm Biomed Anal,2007,43(4):1195-1205.
[15] Ma Y,Kiesewetter DO,Lang L,et al.Determination of 18F-FCWAY,18F-FP-TZTP,and their metabolites in plasma using rapid and efficient liquid-liquid and solid phase extractions.Nucl Med Biol,2003,30(3):233-240.
[16] Hasler F,Kuznetsova OF,Krasikova RN, et al.GMP-compliant radiosynthesis of 18F-altanserin and human plasma metabolite studies.Appl Radiat Isot,2009,67(4):598-601.
[17] Jang DP,Lee SH,Park CW,et al.Effects of fluoxetine on the rat brain in the forced swimming test:a 18F-FDG micro-PET imaging study.Neurosci Lett,2009,451(1):60-64.
[18] Idbaih A,Burlet A,Adle-Biassette H,et al.Altered cerebral glucose metabolism in an animal model of diabetes insipidus:a micro-PET study.Brain Res,2007,1158:164-168.
[19] Conti PS,Bading JR,Mouton PP,et al.In vivo measurement of cell proliferation in canine brain tumor using 11C-labeled FMAU and PET.Nucl Med Biol,2008,35(1):131-141.
[20] Bading JR,Shahinian AH,Vail A,et al.Pharmacokinetics of the thymidine analog 2’-fluoro-5-methyl-1-beta-D-arabinofura-nosylu-racil (FMAU) in tumor-bearing rats.Nucl Med Biol,2004,31(4):407-418.
[21] Bading JR,Shahinian AH,Bathija P,et al.Pharmacokinetics of the thymidine analog 2’-fluoro-5’-[14C]-methyl-1-β-D-arabinofuranosy-luracil(14C-FMAU)in rat prostate tumor cells.Nucl Med Biol,2000,27(4):361-368.
[22] Solon EG,Schweitzer A,Stoeckli M,el al.Autoradiography,MALDI-MS,and SIMS-MS imaging in pharmaceutical discovery and development.AAPSJ,2010,12(1):11-26.
[23] Dedeurwaerdere S,Gregoire MC,Vivash L,et al.In vivo imaging characteristics of two fluorinated flumazenil radiotracers in the rat.Eur J Nucl Med Mol Imaging,2009,36(6):958-965.
[24] Kikuchi T,Okamura T,Zhang MR,et al.In vivo evaluation of N-[18F] fluoroethylpiperidin-4ylmethyl acetate in rats compared with MP4A as a probe for measuring cerebral acetylcholinesterase activity.Synapse,2009,64(3):209-215.
[25] Gillings N.A restricted access material for rapid analysis of 11C-labeled radiopharmaceuticals and their metabolites in plasma.Nucl Med Biol,2009,36(8):961-965.
[26] Ma S, Zhu M.Recent advances in applications of liquid chromatography-tandem mass spectrometry to the analysis of reactive drug metabolites.Chem Biol Interact,2009,179(1):25-37.
[27] Gray MJ,Chang D,Zhang Y,et al.Development of liquid chio-matography/mass spectrometry methods for the quantitative analysis of herbal medicine in biological fluids:a review.Biomed Chro-matogr,2010,24(1):91-103.
[28] 乔晋萍,韩梅,朱霖.Radio-LC-MS及其在放射性药物研究中的应用.质谱学报,2008,29(1):60-64.
[29] Boswell CA,McQuade P,Weisman GR,et al.Optimization of labeling and metabolite analysis of copper-64-labeled azamacro-cyclic chelators by radio-LC-MS.Nucl Med Biol,2005,32(1):29-38.
[30] Houle S,DaSilva JN,Wilson AA.Imaging the 5-HT1A receptors with PET:WAY-100635 and analogues.Nucl Med Biol,2000,27(4):361-368.
[31] Zoghbi SS,Shetty HU,Ichise M,et al.PET imaging of the dopamine transporter with 18F-FECNT:a polar radiometabolite confounds brain radioligand measurements.J Nucl Med,2006,47(3):520-527.
[32] Mitterhauser M,Wadsak W,Wabnegger L, et al.Biological evaluation of 2’-[18F] fluoroflumazenil ([18F] FFMZ),a potential GABA receptor ligand for PET.Nucl Med Biol,2004,31(2):291-295
[33] Roivainen A,Nägren K,Hirvonen J,et al.Whole-body distribution and metabolism of[N-methyl-11C] (R)-1-(2-chlorophenyl)-N-(1-methylpropyl)-3-isoquinolinecarboxamide in humans; an imaging agent for in vivo assessment of peripheral benzodiazepine receptor activity with poeitron emission tomography.Eur J Nucl Med Mol Imaging,2009,36(4):671-682.
[34] Bier D,Holschbach MH,Wutz W,et al.Metabolism of the A1 adenosine receptor positron emission tomography ligand[18F] 8-cyclopentyl-3-(3-ftuoropropyl)-1-propylxanthine ([18F] CPFPX) in rodents and humans.Drug Metab Dispoe,2006,34(4):570-576.
[35] Hǒltke C,Law MP,Wagner S,et al.PET-compatible endothelin receptor radioligands:synthesis and first in vitro and in vivo studies.Bioorg Med Chem,2009,17(20):7197-7208.
[36] Luurtsema G,Schuit RC,Takkenkamp K,et al.Peripheral metabolism of 18F-FDDNP and cerebral uptake of its labelled metabolites.Nucl Med Biol,2008,35(8):869-874.

相似文献/References:

[1]何燕,苏晋,郑晓霞,等.P-糖蛋白抑制剂在PET显像中的应用研究[J].国际放射医学核医学杂志,2016,40(1):1.[doi:10.3760/cma.j.issn.1673-4114.2016.01.001]
 He Yan,Su Jin,ZhengXiaoxia,et al.Developing P-glycoprotein inhibitor marked by PET[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):1.[doi:10.3760/cma.j.issn.1673-4114.2016.01.001]
[2]许飞,刘建军,黄钢,等.PET乏氧显像在预测肿瘤乏氧及指导临床治疗中的应用进展[J].国际放射医学核医学杂志,2016,40(1):35.[doi:10.3760/cma.j.issn.1673-4114.2016.01.008]
 Xu Fei,Liu Jianjun,Huang Gang,et al.The application of hypoxia imaging with PET in predicting tumor hypoxia and guiding clinical therapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):35.[doi:10.3760/cma.j.issn.1673-4114.2016.01.008]
[3]胡伟,赵军.小胶质细胞在AD炎性机制中的作用及其常见PET显像剂的应用进展[J].国际放射医学核医学杂志,2016,40(1):44.[doi:10.3760/cma.j.issn.1673-4114.2016.01.009]
 Hu Wei,Zhao Jun.Microglia’s Alzheimer disease inflammatory mechanisms and progress of its common application in PET imaging agents[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):44.[doi:10.3760/cma.j.issn.1673-4114.2016.01.009]
[4]张莹莹,王振光,孔艳.PET/CT显像在肺间质纤维化中的应用进展[J].国际放射医学核医学杂志,2016,40(1):55.[doi:10.3760/cma.j.issn.1673-4114.2016.01.011]
 Zhang Yingying,Wang Zhenguang,Kong Yan.Application advancement on PET/CT in pulmonary interstitial fibrosis[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):55.[doi:10.3760/cma.j.issn.1673-4114.2016.01.011]
[5]李海峰,张晓军,李云钢,等.国产模块LOOP环改良法合成11C-蛋氨酸[J].国际放射医学核医学杂志,2016,40(2):106.[doi:10.3760/cma.j.issn.1673-4114.2016.02.004]
 Li Haifeng,Zhang Xiaojun,Li Yungang,et al.Synthesis of 11C-methionine on home-made module by the improved LOOP method[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):106.[doi:10.3760/cma.j.issn.1673-4114.2016.02.004]
[6]史文杰,孟召伟,谭建.基于Deauville标准探讨18F-FDG PET/CT在霍奇金淋巴瘤复发诊断中的应用价值[J].国际放射医学核医学杂志,2016,40(2):120.[doi:10.3760/cma.j.issn.1673-4114.2016.02.007]
 Shi Wenjie,Meng Zhaowei,Tan Jian.Value of 18F-FDG PET/CT on diagnosis of Hodgkin lymphoma recurrence using Deauville criterion[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):120.[doi:10.3760/cma.j.issn.1673-4114.2016.02.007]
[7]尤阳,轩昂,张杰,等.淋巴瘤患者大脑静息葡萄糖代谢改变[J].国际放射医学核医学杂志,2016,40(4):255.[doi:10.3760/cma.j.issn.1673-4114.2016.04.003]
 You Yang,Xuan Ang,Zhang Jie,et al.Changes in resting-state brain glucose metabolism in patients with lymphoma[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):255.[doi:10.3760/cma.j.issn.1673-4114.2016.04.003]
[8]王朋,崔邦平,代文莉,等.18F-FDG PET/CT在前列腺癌中的应用进展[J].国际放射医学核医学杂志,2016,40(4):277.[doi:10.3760/cma.j.issn.1673-4114.2016.04.008]
 Wang Peng,Cui Bangping,Dai Wenli,et al.Progress in the application of 18F-FDG PET/CT in prostate cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):277.[doi:10.3760/cma.j.issn.1673-4114.2016.04.008]
[9]李菲,黄俊星,张俊.18F-FDG PET/CT在食管癌中的临床应用[J].国际放射医学核医学杂志,2016,40(4):282.[doi:10.3760/cma.j.issn.1673-4114.2016.04.009]
 Li Fei,Huang Junxing,Zhang Jun.The clinical application of 18F-FDG PET/CT in esophageal cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):282.[doi:10.3760/cma.j.issn.1673-4114.2016.04.009]
[10]张巍,杨珂.18f正电子放射性药物生产及使用中医务人员的受照剂量研究[J].国际放射医学核医学杂志,2015,39(5):420.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 016]
 zhang wei,yang ke..the research of radiation dose of 18f-fdg to pet/ct related personnel[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(2):420.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 016]
[11]李海峰,张晓军,张锦明.多巴胺转运蛋白显像剂11C-β-CFT在帕金森病中的应用研究[J].国际放射医学核医学杂志,2016,40(3):218.[doi:10.3760/cma.j.issn.1673-4114.2016.03.011]
 Li Haifeng,Zhang Xiaojun,Zhang Jinming.Review of the use of dopamine transporter imaging agent 11C-β-CFT for diagnosing Parkinson disease[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):218.[doi:10.3760/cma.j.issn.1673-4114.2016.03.011]

备注/Memo

备注/Memo:
收稿日期:2010-02-01。
基金项目:国家重点基础研究发展计划(973计划)(2006CB500705);国家高技术研究发展计划(863计划)(2006AA02A408)
通讯作者:乔晋萍(E-mail:piaojp920@gmail.com)
更新日期/Last Update: 1900-01-01