[1]黄顺,韩彦江,郑希,等.靶向表皮生长因子受体小分子类PET显像剂研究进展[J].国际放射医学核医学杂志,2017,41(1):50-58.[doi:10.3760/cma.j.issn.1673-4114.2017.01.010]
 Huang Shun,Han Yanjiang,Zheng Xi,et al.PET imaging agents of small molecules inhibitors targeting EGFR[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(1):50-58.[doi:10.3760/cma.j.issn.1673-4114.2017.01.010]
点击复制

靶向表皮生长因子受体小分子类PET显像剂研究进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
41
期数:
2017年第1期
页码:
50-58
栏目:
综述
出版日期:
2017-01-25

文章信息/Info

Title:
PET imaging agents of small molecules inhibitors targeting EGFR
作者:
黄顺1 韩彦江1 郑希2 赵肃清2 吴湖炳1 王全师1
1. 510515 广州, 南方医科大学南方医院PET中心;
2. 510006 广州, 广东工业大学, 轻工化工学院制药工程系
Author(s):
Huang Shun1 Han Yanjiang1 Zheng Xi2 Zhao Suqing2 Wu Hubing1 Wang Quanshi1
1. PET Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
2. Department of Pharmaceutical Engineering, Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
关键词:
受体表皮生长因子放射性示踪剂正电子发射断层显像术酪氨酸激酶抑制剂
Keywords:
Receptorepidermal growth factorRadioactive tracersPositron-emission tomographyTyrosine kinase inhibitor
DOI:
10.3760/cma.j.issn.1673-4114.2017.01.010
摘要:
表皮生长因子受体(EGFR)在多种癌症的发生发展中起着重要作用,目前已有多种EGFR靶向药物被美国食品与药品管理局批准用于临床,但因个体敏感程度不同,总体疗效偏低。研究表明EGFR高表达或突变患者对靶向药物敏感,因此明确EGFR表达水平和突变状态对临床用药有重要指导意义。PET成像技术能实现分子水平无创显像,并能通过SUV进行半定量研究,使得在体内无创明确EGFR表达、突变情况,指导靶向药物的精准治疗成为可能。笔者综述了靶向EGFR的小分子类PET显像剂,以期为新的探针研发及其临床应用提供一定帮助。
Abstract:
Epithelial growth factor receptor(EGFR) plays an important role in numerous cancers and many types of targeting EGFR drugs have been approved by the Food and Drug Administration. However, the individual sensitivity and efficiency rates of these targeting EGFR medicines are low. Many studies have shown that patients with high EGFR expression or mutation are responsive to targeting drugs. Therefore, clearing the EGFR expression and mutation status is significant for clinical medication. PET is a noninvasive in vivo imaging technique that enables the visualization and quantification of the distribution of molecules labeled with positron-emitting isotopes at a picomolar level. PET can guide the precision medicine for these targeting EGFR drugs. This review summarizes the small-molecule PET probes for targeting EGFR.

参考文献/References:

[1] 陈万青, 郑荣寿, 曾红梅, 等.2011年中国恶性肿瘤发病和死亡分析[J].中国肿瘤, 2015, 24(1):1-10.DOI:10.11735/j.issn.1004-0242.2015.01.A001.Chen WQ, Zheng RS, Zeng HM, et al.Report of cancer incidence and mortality in China, 2011[J].China Cancer, 2015, 24(1):1-10.
[2] Cataldo VD, Gibbons DL, Pérez-Soler R, et al.Treatment of non-small-cell lung cancer with erlotinib or gefitinib[J].N Engl J Med, 2011, 364(10):947-955.DOI:10.1056/NEJMct0807960.
[3] Mendelsohn J, Baselga J.Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer[J].J Clin Oncol, 2003, 21(14):2787-2799.DOI:10.1200/JCO.2003.01.504.
[4] Rudin M, Weissleder R.Molecular imaging in drug discovery and development[J].Nat Rev Drug Discov, 2003, 2(2):123-131.DOI:10.1038/nrd1007.
[5] Green MR.Targeting targeted therapy[J].N Engl J Med, 2004, 350(21):2191-2193.DOI:10.1056/NEJMe048101.
[6] Gridelli C, Marinis F, Maio M, et al.Gefitinib as first-line treatment for patients with advanced non-small-cell lung cancer with activating epidermal growth factor receptor mutation:Review of the evidence[J].Lung Cancer, 2011, 71(3):249-257.DOI:10.1016/j.lungcan.2010.12.008.
[7] Jian G, Songwen Z, Ling Z, et al.Prediction of epidermal growth factor receptor mutations in the plasma/pleural effusion to efficacy of gefitinib treatment in advanced non-small cell lung cancer[J].J Cancer Res Clin Oncol, 2010, 136(9):1341-1347.DOI:10.1007/s00432-010-0785-z.
[8] Bai H, Mao L, Wang HS, et al.Epidermal growth factor receptor mutations in plasma DNA samples predict tumor response in Chinese patients with stages IIIB to IV non-small-cell lung cancer[J].J Clin Oncol, 2009, 27(16):2653-2659.DOI:10.1200/JCO.2008.17.3930.
[9] Johnström P, Fredriksson A, Thorell JO, et al.Synthesis of[methoxy-11C]PD153035, a selective EGF receptor tyrosine kinase inhibitor[J].J Labelled Comp Radiopharm, 1998, 41(7):623-629.DOI:10.1002/(SICI)1099-1344(199807)41:73.0.CO;2-Q.
[10] Fredriksson A, Johnström P, Thorell JO, et al.In vivo evaluation of the biodistribution of 11C-labeled PD153035 in rats without and with neuroblastoma implants[J].Life Sci, 1999, 65(2):165-174.DOI:10.1016/S0024-3205(99)00233-7.
[11] Samén E, Thorell JO, Fredriksson A, et al.The tyrosine kinase inhibitor PD153035:implication of labeling position on radiometabolites formed in vitro[J].Nucl Med Biol, 2006, 33(8):1005-1011.DOI:10.1016/j.nucmedbio.2006.09.008.
[12] Samén E, Arnberg F, Lu L, et al.Metabolism of epidermal growth factor receptor targeting probe[11C]PD153035:impact on biodistribution and tumor uptake in rats[J].J Nucl Med, 2013, 54(10):1804-1811.DOI:10.2967/jnumed.113.120493.
[13] Wang H, Yu JM, Yang GR, et al.Further characterization of the epidermal growth factor receptor ligand 11C-PD153035[J].Chin Med J(Engl), 2007, 120(11):960-964.
[14] Wang H, Yu J, Yang G, et al.Assessment of 11C-labeled-4-N-(3-bromoanilino)-6, 7-dimethoxyquinazoline as a positron emission tomography agent to monitor epidermal growth factor receptor expression[J].Cancer Sci, 2007, 98(9):1413-1416.DOI:10.1111/j.1349-7006.2007.00562.x.
[15] Liu N, Li M, Li X, et al.PET-based biodistribution and radiation dosimetry of epidermal growth factor receptor-selective tracer 11C-PD153035 in humans[J].J Nucl Med, 2009, 50(2):303-308.DOI:10.2967/jnumed.108.056556.
[16] Meng X, Loo BW Jr, Ma L, et al.Molecular imaging with 11C-PD153035 PET/CT predicts survival in non-small cell lung cancer treated with EGFR-TKI:a pilot study[J].J Nucl Med, 2011, 52(10):1573-1579.DOI:10.2967/jnumed.111.092874.
[17] DeJesus OT, Murali D, Flores LG, et al.Synthesis of[F-18]-ZD1839 as a PET imaging agent for epidermal growth factor receptors[J].J Labelled Comp Radiopharm, 2003, 46(S1):S1-S9.DOI:10.1002/jlcr.750.
[18] Murali D, Flores LG, Converse AK, et al.Evaluation of[F-18] Iressa as a PET agent for tumor overexpressing epidermal growth factor (EGFR) receptors[J].J Labelled Comp Radiopharm, 2005, 48(s1):1-11.DOI:10.1002/jlcr.968.
[19] Seimbille Y, Phelps ME, Czernin J, et al.Fluorin-18 labeling of 6, 7-distributed anilinoquinazoline derivatives for positron emission tomography(PET) imaging of tyrosine kianse receptors:synthesis of 18F-Iressa and related molecular probes[J].J Labelled Comp Radiopharm, 2005, 48(11):829-843.DOI:10.1002/jlcr.998.
[20] Su H, Seimbille Y, Ferl GZ, et al.Evaluation of[18F] gefitinib as a molecular imaging probe for the assessment of the epidermal growth factor receptor status in malignant tumors[J].Eur J Nucl Med Mol Imaging, 2008, 35(6):1089-1099.DOI:10.1007/s00259-007-0636-6.
[21] Läppchen T, Vlaming ML, Custers E, et al.Automated synthesis of[18F] gefitinib on a modular system[J].Appl Radiat Isot, 2012, 70(1):205-209.DOI:10.1016/j.apradiso.2011.09.005.
[22] Holt DP, Ravert HT, Dannals RF, et al.Synthesis of[11C] gefitinib for imaging epidermal growth factor receptor tyrosine kinase with positron emission tomography[J].J Labelled Comp Radiopharm, 2006, 49(10):883-888.DOI:10.1002/jlcr.1104.
[23] Wang JQ, Gao M, Miller KD, et al.Synthesis of[11C] Iressa as a new potential PET cancer imaging agent for epidermal growth factor receptor tyrosine kinase[J].Bioorg Med Chem Lett, 2006, 16(15):4102-4106.DOI:10.1016/j.bmcl.2006.04.080.
[24] Zhang MR, Kumata K, Hatori A, et al.[11C]Gefitinib([11C] Iressa):radiosynthesis, in vitro uptake, and in vivo imaging of intact murine fibrosarcoma[J].Mol Imaging Biol, 2010, 12(2):181-191.DOI:10.1007/s11307-009-0265-5.
[25] Kawamura K, Yamasaki T, Yui J, et al.In vivo evaluation of P-glycoprotein and breast cancer resistance protein modulation in the brain using[11C] gefitinib[J].Nucl Med Biol, 2009, 36(3):239-246.DOI:10.1016/j.nucmedbio.2008.12.006.
[26] Vlaming ML, Läppchen T, Jansen HT, et al.PET-CT imaging with[18F]-gefitinib to measure Abcb1a/1b(P-gp)and Abcg2(Bcrp1)mediated drug-drug interactions at the murine blood-brain barrier[J].Nucl Med Biol, 2015, 42(11):833-841.DOI:10.1016/j.nucmedbio.2015.07.004.
[27] Memon AA, Jakobsen S, Dagnaes-Hansen F, et al.Positron emission tomography(PET) imaging with[11C]-labeled erlotinib:a micro-PET study on mice with lung tumor xenografts[J].Cancer Res, 2009, 69(3):873-878.DOI:10.1158/0008-5472.CAN-08-3118.
[28] Memon AA, Weber B, Winterdahl M, et al.PET imaging of patients with non-small cell lung cancer employing an EGF receptor targeting drug as tracer[J].Br J Cancer, 2011, 105(12):1850-1855.DOI:10.1038/bjc.2011.493.
[29] Weber B, Winterdahl M, Memon A, et al.Erlotinib accumulation in brain metastases from non-small cell lung cancer:visualization by positron emission tomography in a patient harboring a mutation in the epidermal growth factor receptor[J].J Thorac Oncol, 2011, 6(7):1287-1289.DOI:10.1097/JTO.0b013e318219ab87.
[30] Petrulli JR, Sullivan JM, Zheng MQ, et al.Quantitative analysis of[11C]-erlotinib PET demonstrates specific binding for activating mutations of the EGFR kinase domain[J].Neoplasia, 2013, 15(12):1347-1353.DOI:10.1593/neo.131666.
[31] Abourbeh G, Itamar B, Salnikov O, et al.Identifying erlotinib-sensitive non-small cell lung carcinoma tumors in mice using[11C]erlotinib PET[J/OL].EJNMMI Res, 2015, 5:4[2016-08-16].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385014.DOI:10.1186/s13550-014-0080-0.
[32] Traxl A, Wanek T, Mairinger S, et al.Breast Cancer Resistance Protein and P-Glycoprotein Influence in Vivo Disposition of 11C-Erlotinib[J].J Nucl Med, 2015, 56(12):1930-1936.DOI:10.2967/jnumed.115.161273.
[33] Bahce I, Smit EF, Lubberink M, et al.Development of[11C]erlotinib positron emission tomography for in vivo evaluation of EGF receptor mutational status[J].Clin Cancer Res, 2013, 19(1):183-193.DOI:10.1158/1078-0432.CCR-12-0289.
[34] Yaqub M, Bahce I, Voorhoeve C, et al.Quantitative and simplified analysis of 11C-Erlotinib studies[J].J Nucl Med, 2016, 57(6):861-866.DOI:10.2967/jnumed.115.165225.
[35] Bahce I, Yaqub M, Errami H, et al.Effects of erlotinib therapy on[11C]erlotinib uptake in EGFR mutated, advanced NSCLC[J/OL].EJNMMI Res, 2016, 6(1):10[2016-08-16].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746207.DOI:10.1186/s13550-016-0169-8.
[36] 黄顺, 王全师, 郑希, 等.一种EGFR正电子示踪剂及其制备方法和应用:中国, 201510114513.X[P].2015-08-05.Huang S, Wang QS, Zhen X, et al.The preparation and application of an EGFR positron tracer:CN, 201510114513.X[P].2015-08-05.
[37] Basuli F, Wu H, Li C, et al.A first synthesis of 18F-radiolabeled lapatinib:a potential tracer for positron emission tomographic imaging of Erbb1/Erbb2 tyrosine kinase activity[J].J Labelled Comp Radiopharm, 2011, 54(9):633-636.DOI:10.1002/jlcr.1898.
[38] Saleem A, Searle GE, Kenny LM, et al.Lapatinib access into normal brain and brain metastases in patients with HER-2 overexpressing breast cancer[J/OL].EJNMMI Res, 2015, 5:30[2016-08-16].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4424224.DOI:10.1186/s13550-015-0103-5.
[39] Gao M, Lola CM, Wang M, et al.Radiosynthesis of[11C]Vandetanib and[11C]chloro-Vandetanib as new potential PET agents for imaging of VEGFR in cancer[J].Bioorg Med Chem Lett, 2011, 21(11):3222-3226.DOI:10.1016/j.bmcl.2011.04.049.
[40] Li F, Jiang S, Zu Y, et al.A tyrosine kinase inhibitor-based high-affinity PET radiopharmaceutical targets vascular endothelial growth factor receptor[J].J Nucl Med, 2014, 55(1):1525-1531.DOI:10.2967/jnumed.114.138925.
[41] Samén, E, Li L, Mulder J, et al.Visualization of angiogenesis during cancer development in the polyoma middle T breast cancer model:molecular imaging with(R)-[11C]PAQ[J/OL].EJNMMI Res, 2014, 4(1):17[2016-08-16].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986910.DOI:10.1186/2191-219X-4-17.
[42] Murakami H, Tamura T, Takahashi T, et al.Phase I study of continuous afatinib(BIBW 2992) in patients with advanced non-small cell lung cancer afterprior chemotherapy/erlotinib/gefitinib (LUX-Lung 4)[J].Cancer Chemother Pharmacol, 2012, 69(4):891-899.DOI:10.1007/s00280-011-1738-1.
[43] Slobbe P, Windhorst AD, Stigter-van Walsum M, et al.Development of[18F] afatinib as new TKI-PET tracer for EGFR positive tumors[J].Nucl Med Biol, 2014, 41(9):749-757.DOI:10.1016/j.nucmedbio.2014.06.005.
[44] Slobbe P, Windhorst AD, Stigter-van Walsum M, et al.A comparative PET imaging study with the reversible and irreversible EGFR tyrosine kinase inhibitors[11C]erlotinib and[18F]afatinib in lung cancer-bearing mice[J/OL].EJNMMI Res, 2015, 5(1):14[2016-08-16].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385286.DOI:10.1186/s13550-015-0088-0.
[45] Pal A, Glekas A, Doubrovin M, et al.Molecular imaging of EGFR kinase activity in tumors with 124I-labeled small molecular tracer and positron emission tomography[J].Mol Imaging Biol, 2006, 8(5):262-277.DOI:10.1007/s11307-006-0049-0.
[46] Tian M, Ogawa K, Wendt R, et al.Whole-body biodistribution kinetics, metabolism, and radiation dosimetry estimates of 18F-PEG6-IPQA in nonhuman primates[J].J Nucl Med, 2011, 52(6):934-941.DOI:10.2967/jnumed.110.086777.
[47] Yeh HH, Ogawa K, Balatoni J, et al.Molecular imaging of active mutant L858R EGF receptor(EGFR) kinase-expressing nonsmall cell lung carcinomas using PET/CT[J].Proc Natl Acad Sci U S A, 2011, 108(4):1603-1608.DOI:10.1073/pnas.1010744108.
[48] Pal A, Balatoni JA, Mukhopadhyay U, et al.Radiosynthesis and initial in vitro evaluation of[18F]F-PEG6-IPQA-a novel PET radiotracer for imaging EGFR expression-activity in lung carcinomas[J].Mol Imaging Biol, 2011, 13(5):853-861.DOI:10.1007/s11307-010-0408-8.
[49] Medina OP, Pillarsetty N, Glekas A, et al.Optimizing tumor targeting of the lipophilic EGFR-binding radiotracer SKI 243 using a liposomal nanoparticle delivery system[J].J Control Release, 2011, 149(3):292-298.DOI:10.1016/j.jconrel.2010.10.024.
[50] Yeh SH, Lin CF, Kong FL, et al.Molecular imaging of nonsmall cell lung carcinomas expressing active mutant EGFR kinase using PET with[124I]-morpholino-IPQA[J/OL].Biomed Res Int, 2013, 2013:549359[2016-08-16].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3730369.DOI:10.1155/2013/549359.
[51] Bonasera TA, Ortu G, Rozen Y, et al.Potential 18F-labeled biomarkers for epidermal growth factor receptor tyrosine kinase[J].Nucl Med Biol, 2001, 28(4):359-374.DOI:10.1016/S0969-8051(01)00200-1.
[52] Ortu G, Ben-David I, Rozen Y, et al.Labeled EGFr-TK irreversible inhibitor(ML03):in vitro and in vivo properties, potential as PET biomarker for cancer and feasibility as anticancer drug[J].Int J Cancer, 2002, 101(4):360-370.DOI:10.1002/ijc.10619.
[53] Ben-David I, Rozen Y, Ortu G, et al.Radiosynthesis of ML03, a novel positron emission tomography biomarker for targeting epidermal growth factor receptor via the labeling synthon:[11C]acryloyl chloride[J].Appl Radiat Isot, 2003, 58(2):209-217.DOI:10.1016/S0969-8043(02)00301-9.
[54] Mishani E, Abourbeh G, Rozen Y, et al.Novel carbon-11 labeled 4-dimethylamino-but-2-enoic acid[4-(phenylamino)-quinazoline-6-yl]-amides:potential PET bioprobes for molecular imaging of EGFR-positive tumors[J].Nucl Med Biol, 2004, 31(4):469-476.DOI:10.1016/j.nucmedbio.2003.12.005.
[55] Dissoki S, Laky D, Mishani E.Fluorine-18 labeling of ML04-presently the most promising irreversible inhibitor candidate for visualization of EGFR in cancer[J].J Label Compd Radiopharm, 2006, 49(6):533-543.DOI:10.1002/jlcr.1071.
[56] Abourbeh G, Dissoki S, Jacobson O, et al.Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumors[J].Nucl Med Biol, 2007, 34(1):55-70.DOI:10.1016/j.nucmedbio.2006.10.012.
[57] Shaul M, Abourbeh G, Jacobson O, et al.Novel iodine-124 labeled EGFR inhibitors as potential PET agents for molecular imaging in cancer[J].Bioorg Med Chem, 2004, 12(13):3421-3429.DOI:10.1016/j.bmc.2004.04.044.
[58] Dissoki S, Aviv Y, Laky D, et al.The effect of the[18F]-PEG group on tracer qualification of[4-(phenylamino)-quinazoline-6-YL]-amide moiety-an EGFR putative irreversible inhibitor[J].Appl Radiat Isot, 2007, 65(10):1140-1151.DOI:10.1016/j.apradiso.2007.04.014.
[59] Dissoki S, Eshet R, Billauer H, et al.Modified PEG-anilinoquinazoline derivatives as potential EGFR PET agents[J].J Labelled Compd Radiopharm, 2009, 52(2):41-52.DOI:10.1002/jlcr.1569.
[60] Pantaleo MA, Mishani E, Nanni C, et al.Evaluation of modified PEG-anilinoquinazoline derivatives as potential agents for EGFR imaging in cancer by small animal PET[J].Mol Imaging Biol, 2010, 12(6):616-625.DOI:10.1007/s11307-010-0315-z.
[61] Vasdev N, Dorff PN, Gibbs AR, et al.Synthesis of 6-acrylamido-4-(2-[18F]fluoroanilino) quinazoline:a prospective irreversible EGFR binding probe[J].J Labelled Compd Radiopharm, 2005, 48(2):109-115.DOI:10.1002/jlcr.903.
[62] Vasdev N, Dorff PN, O’neil JP, et al.Metabolic stability of 6, 7-dialkoxy-4-(2-, 3-and 4-[18F]fluoroanilino) quinazolines, potential EGFR imaging probes[J].Bioorg Med Chem, 2011, 19(9):2959-2965.DOI:10.1016/j.bmc.2011.03.032.
[63] Kobus D, Giesen Y, Ullrich R, et al.A fully automated two-step synthesis of an 18F-labelled tyrosine kinase inhibitor for EGFR kinase activity imaging in tumors[J].Appl Radiat Isot, 2009, 67(11):1977-1984.DOI:10.1016/j.apradiso.2009.07.018.
[64] Wang M, Gao M, Zheng QH.The first radiosynthesis of[11C]AZD8931 as a new potential PET agent for imaging of EGFR, HER2 and HER3 signaling[J].Bioorg Med Chem Lett, 2014, 24(18):4455-4459.DOI:10.1016/j.bmcl.2014.07.092.
[65] Neto C, Fernandes C, Oliveira MC, et al.Radiohalogenated 4-anilinoquinazoline-based EGFR-TK inhibitors as potential cancer imaging agents[J].Nucl Med Biol, 2012, 39(2):247-260.DOI:10.1016/j.nucmedbio.2011.09.001.
[66] 齐传民, 李石磊, 王潇, 等.新型18F标记取代喹唑啉类化合物及其制备方法和肿瘤PET显像应用:中国, 201210036262.4[P].2013-08-21.Qi CM, Li SL, Wang X, et al.The preparation of 18F labeled quinazoline compound and its PET imaging application:CN, 201210036262.4[P].2013-08-21.
[67] 齐传民, 陈玉蓉, 冯曼, 等.新型18F标记4-氨基喹唑啉类衍生物及其制备方法和肿瘤PET显像应用:中国, 201210036250.1[P].2013-08-21.Qi CM, Chen YR, Feng M, et al.The preparation of 18F labeled 4-amino quinazoline derivatives and application of tumour PET imaging:CN, 201210036250.1[P].2013-08-21.
[68] 申宝忠.一种18F标记的喹唑啉类不可逆性EGFR正电子示踪剂及其制备方法和应用:中国, 201310711310.X[P].2014-03-26.Shen BZ.The preparation and application of 18F labeled quinazoline class irreversibility EGFR PET tracer:CN, 201310711310.X[P].2014-03-26.
[69] 申宝忠.18F标记的喹唑啉类EGFR正电子示踪剂及其制备方法和应用:中国, 201310711309.7[P].2014-03-26.Shen BZ.The preparation and application of 18F labeled quinazoline class EGFR PET tracer:CN, 201310711309.7[P].2014-03-26.
[70] 刘振峰, 董孟杰, 王国林, 等.2-氟代苯胺喹唑啉类肿瘤正电子显像剂及制备和应用:中国, 201310256474.8[P].2013-09-18.Liu ZF, Dong MJ, Wang GL, et al.The preparation and application of 2-fluoroaniline quinazoline class tumor positron imaging agent:CN, 201310256474.8[P].2013-09-18.
[71] Pisaneschi F, Nguyen QD, Shamsaei E, et al.Development of a new epidermal growth factor receptor positron emission tomography imaging agent based on the 3-cyanoquinoline core:synthesis and biological evaluation[J].Bioorg Med Chem, 2010, 18(18):6634-6645.DOI:10.1016/j.bmc.2010.08.004.

相似文献/References:

[1]梁雯丽,郑艳,李娜,等.Graves甲亢患者131I治疗后早期TRAb及TSAb变化的研究分析[J].国际放射医学核医学杂志,2016,40(1):13.[doi:10.3760/cma.j.issn.1673-4114.2016.01.003]
 Liang Wenli,Zheng Yan,Li Na,et al.Analysis of the changes in early TRAb and TSAb after 131I treatment for patients with Graves hyperthyroidism[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(1):13.[doi:10.3760/cma.j.issn.1673-4114.2016.01.003]
[2]杨洋,樊赛军.LXXLL模体在雌激素受体信号通路中的作用及应用价值[J].国际放射医学核医学杂志,2014,38(1):22.[doi:10.3760/cma.j.issn 1673-4114.2014.01.006]
 Yang Yang,Fan Saijun.Role of LXXLL motif in modulation of estrogen receptor signaling and its potential application[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(1):22.[doi:10.3760/cma.j.issn 1673-4114.2014.01.006]
[3]白庆双,李宁,方佩华,等.人血清TRAb酶联免疫吸附试验检测在甲状腺疾病患者中的临床应用[J].国际放射医学核医学杂志,2014,38(2):80.[doi:10.3760/cma.j.issn.1673-4114.2014.02.003]
 Bai Qingshuang,Li Ning,Fang Peihua,et al.The clinical application of human serum level of the TRAb measured by enzyme-linked immunosorbent assay in patients with thyroid diseases[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(1):80.[doi:10.3760/cma.j.issn.1673-4114.2014.02.003]
[4]李丽,赵长久,田国梅.CXC型趋化因子受体4及其分子显像剂在肿瘤方面的研究进展[J].国际放射医学核医学杂志,2014,38(3):190.[doi:10.3760/cma.j.issn.1673-4114.2014.03.012]
 Li Li,Zhao Changjiu,Tian Guomei.Research progress of CXC chemokine receptor type 4 and molecular imaging in tumors[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(1):190.[doi:10.3760/cma.j.issn.1673-4114.2014.03.012]
[5]林美福,陈文新,周硕,等.18F-FES PET/CT显像在雌激素受体阳性乳腺癌诊疗中的初步应用[J].国际放射医学核医学杂志,2013,37(4):216.[doi:10.3760/cma.j.issn.1673-4114.2013.04.007]
 LIN Mei-fu,CHEN Wen-xin,ZHOU Shuo,et al.Application of 18F-FES PET/CT in diagnosis and endocrine therapy of patients with estrogen receptorpositive breast cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(1):216.[doi:10.3760/cma.j.issn.1673-4114.2013.04.007]
[6]袁杰,刘兴党,韩梅.SPECT、PET神经受体和转运体显像技术在海洛因成瘾研究中的应用[J].国际放射医学核医学杂志,2013,37(1):30.[doi:10.3760/cma.j.issn.1673-4114.2013.01.009]
 YUAN Jie,LIU Xing-dang,HAN Mei.Neuroreceptor and its transporters imaging by PET and SPECT in heroin addiction[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(1):30.[doi:10.3760/cma.j.issn.1673-4114.2013.01.009]
[7]鲍伟奇,邱春,管一晖.γ-氨基丁酸A型-苯二氮革受体显像剂在神经系统疾病中的应用[J].国际放射医学核医学杂志,2012,36(1):1.[doi:10.3760/cma.j.issn.1673-4114.2012.01.001]
 BAO Wei-qi,QIU Chun,GUAN Yi-hui.Application of gamma-aminobutyric acid type A-benzodiazepine receptor imaging for study of neuropsychiatric disorders[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(1):1.[doi:10.3760/cma.j.issn.1673-4114.2012.01.001]
[8]程维维,王辉.促甲状腺激素受体与甲状腺癌关系的研究进展[J].国际放射医学核医学杂志,2012,36(2):69.[doi:10.3760/cma.j.issn.1673-4114.2012.02.002]
 CHENG Wei-wei,WANG Hui.Progress in the relationship of thyroid-stimulating hormone receptor and thyroid carcinoma[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(1):69.[doi:10.3760/cma.j.issn.1673-4114.2012.02.002]
[9]黄丽娟,陈宁,叶静,等.反义肽核酸对促甲状腺激素受体mRNA表达的影响[J].国际放射医学核医学杂志,2012,36(5):310.[doi:10.3760/cnla.j.issn.1673-4114.2012.05.011]
 HUANG Li-juan,CHEN Ning,YE Jing,et al.The effects of antisense peptide nucleic acid on the expression of thyroid stimulating hormone receptor mRNA[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(1):310.[doi:10.3760/cnla.j.issn.1673-4114.2012.05.011]
[10]刘淼,刘兴党.生长抑素受体显像剂99Tcm-奥曲肽的SPECT研究[J].国际放射医学核医学杂志,2012,36(3):138.[doi:10.3760/cma.j.issn.1673-4114.2012.03.003]
 LIU Miao,LIU Xing-dang.Development of study on SPECT imaging with radioisotope 99Tcm-octreotide[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(1):138.[doi:10.3760/cma.j.issn.1673-4114.2012.03.003]
[11]邢宇,赵新明.放射性核素标记HER2亲和体分子探针精准诊疗的研究进展[J].国际放射医学核医学杂志,2016,40(2):139.[doi:10.3760/cma.j.issn.1673-4114.2016.02.011]
 Xing Yu,Zhao Xinming.Advances in radionuclide-labeled HER2 affibody molecular probes for precise diagnosis and treatment[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(1):139.[doi:10.3760/cma.j.issn.1673-4114.2016.02.011]
[12]郭坤,高蕊,于燕,等.表皮生长因子受体基因表达与甲状腺功能亢进症131I治疗预后的关系[J].国际放射医学核医学杂志,2015,39(1):4.[doi:10.3760/cma.j.issn.1673-4114.2015.01.003]
 Guo Kun,Gao Rui,Yu Yan,et al.The relationship between epidermal growth factor receptor mRNA expression and the efficacv of 131I treatment in hyperthyroidism patients[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(1):4.[doi:10.3760/cma.j.issn.1673-4114.2015.01.003]
[13]周晓靓,王浩,施培基,等.表皮生长因子受体-酪氨酸激酶肿瘤分子显像剂的研究进展[J].国际放射医学核医学杂志,2013,37(2):100.[doi:10.3760/cma.j.issn.1673-4114.2013.02.010]
 ZHOU Xiao-liang,WANG Hao,SHI Pei-ji,et al.The developme nt of epidermal growth factor receptor molecular imaging in cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(1):100.[doi:10.3760/cma.j.issn.1673-4114.2013.02.010]
[14]柳杰,刘佩芳.乳腺癌X射线征象与雌激素受体、孕激素受体和C-erbB-2表达相关性的研究进展[J].国际放射医学核医学杂志,2012,36(5):301.[doi:10.3760/cnla.j.issn.1673-4114.2012.05.009]
 LIU Jie LIU,Pei-fang.Development of the correlation study between mammographic appearances and expression of estrogen receptor, progesterone receptor and C-erbB-2 in patients with breast cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(1):301.[doi:10.3760/cnla.j.issn.1673-4114.2012.05.009]
[15]王相成,王雪梅,何玉林,等.PET-CT表皮生长因子受体显像的研究进展[J].国际放射医学核医学杂志,2010,34(5):266.[doi:10.3760/cma.j.issn.1673-4114.2010.05.003]
 WANG Xiang-cheng,WANG Xue-mei,HE Yu-lin,et al.Study progress of PET-CT epidermal growth factor receptor imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2010,34(1):266.[doi:10.3760/cma.j.issn.1673-4114.2010.05.003]
[16]汪永红,陈文新,何品玉.肿瘤表皮生长因子受体的分子显像研究[J].国际放射医学核医学杂志,2009,33(4):204.[doi:10.3760/cma.j.issn.1673-4114.2009.04.004]
 WANG Yong-hong,CHEN Wen-xin,HE Pin-yu.Tumor epidermal growth factor receptor molecular imaging research[J].International Journal of Radiation Medicine and Nuclear Medicine,2009,33(1):204.[doi:10.3760/cma.j.issn.1673-4114.2009.04.004]
[17]郑玉民,王自正,王峰,等.以表皮生长因子受体为靶点的肿瘤分子靶向治疗[J].国际放射医学核医学杂志,2007,31(1):21.
 ZHENG Yu-min,WANG Zi-zheng,WANG Feng,et al.Epidermal growth factor receptor targeted molecularly therapies of cancers[J].International Journal of Radiation Medicine and Nuclear Medicine,2007,31(1):21.
[18]袁卫红,罗志航,彭荣宗,等.肺癌与表皮生长因子及其受体关系的研究[J].国际放射医学核医学杂志,2006,30(5):261.
 YUAN Wei-hong,LUO Zhi-hang,PENG Rong-zong,et al.The study on the correlation between EGF, EGFR and lung carcinoma[J].International Journal of Radiation Medicine and Nuclear Medicine,2006,30(1):261.
[19]何蕊,朱高红.甲状腺髓样癌靶向治疗的研究进展[J].国际放射医学核医学杂志,2018,(2):154.[doi:10.3760/cma.j.issn.1673-4114.2018.02.010]
 He Rui,Zhu Gaohong.Research status of medullary thyroid carcinoma targeted therapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(1):154.[doi:10.3760/cma.j.issn.1673-4114.2018.02.010]

备注/Memo

备注/Memo:
收稿日期:2016-08-16。
通讯作者:王全师,Email:waslph@163.com
更新日期/Last Update: 1900-01-01