[1]凌萍,张旭光,涂彧.纳米金在肿瘤显像与放射治疗中的应用[J].国际放射医学核医学杂志,2011,35(1):58-62.[doi:10.3760/cma.j.issn.1673-4114.2011.01.016]
 LING Ping,ZHANG Xu-guang,TU Yu.The application of nanogold in tumor imaging and radiotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2011,35(1):58-62.[doi:10.3760/cma.j.issn.1673-4114.2011.01.016]
点击复制

纳米金在肿瘤显像与放射治疗中的应用(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
35
期数:
2011年第1期
页码:
58-62
栏目:
临床放射医学
出版日期:
1900-01-01

文章信息/Info

Title:
The application of nanogold in tumor imaging and radiotherapy
作者:
凌萍1 张旭光2 涂彧1
1. 苏州大学放射医学与公共卫生学院放射卫生学专业, 苏州 215123;
2. 徐州市肿瘤医院放疗科, 徐州 221000
Author(s):
LING Ping1 ZHANG Xu-guang2 TU Yu1
Deportment of Rodiohygiene, School of Radiation Medicine and Health, Soochow University, Suzhou 215123, China
关键词:
肿瘤体层摄影术X线计算机放射疗法纳米金
Keywords:
NeoplasmsTomographyX ray-computerRadiotherapyNanogold
DOI:
10.3760/cma.j.issn.1673-4114.2011.01.016
摘要:
纳米金因具有良好的表面性质和优异的生物亲和性,使其能被多种基团修饰,从而获得对肿瘤细胞的靶向性;又因其具有表面等离子共振效应等强吸收和发光特性,故可进行肿瘤显像。另外,在肿瘤放疗过程中,纳米金能够将吸收的光能转化为热能进行肿瘤局部加热,起到了放疗增敏的效果,从而减少受照剂量,减轻放疗对正常组织的伤害。该文阐述靶向修饰的纳米金在肿瘤显像和放疗中的研究进展,而纳米金在体内分布、代谢及其生物毒性有待进一步研究。
Abstract:
Nanogold can be modified by various groups and thus target to tumor cells because of its satisfactory surface properly and excellent biological affinity, and as its surface plasmon resonance and strong absorption induced luminescence, nanogold can be used in tumor imaging, what’s more, nanogold can transform the light absorbed into localized heat in tumor radiotherapy, which plays a radiosensitization effect, therefor reduces the radiation doses and the damage to normal tissue. This article describes the progression of researching targeted nanogold in tumor imaging and radiotherapy, but the distribution, metabolism and biotoxicity of nanogold in vivo are still not well understood.

参考文献/References:

[1] Daniel MC, Astruc D. Cold nanoparticles:assembly, supramolecu-lar chemistry, quantum-size-related properties, and applications to-ward biology, catalysis and nanotechnology. Chem Rev, 2004, 104(1):293-346.
[2] von Maltzahn G,Centrone A, Park JH, et al. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater, 2009, 21(31):3175-3180.
[3] Huang X, Jain PK, El-Sayed IH,et al. Determination of the mini-mum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem Photobiol, 2006, 82(2):412-417.
[4] Huang X, El-Sayed IH, Qian W,et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc,2006, 128(6):2115-2120.
[5] Kamen BA, Smith AK. A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell-models in vivo. Adv Drug Deliv Rev, 2004, 56(8):1085-1097.
[6] Sabharanjak S, Mayor S. Folate receptor endocytosis and traffick-ing. Adv Drug Deliv Rev, 2004, 56(8):1099-1109.
[7] Dixit V, Van den Bossche J, Sherman DM,et al. Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparti-cles for selective targeting of folate receptor-positivey tumor cells. Bioconjug Chem, 2006, 17(3):603-609.
[8] Prabaharan M, trailer JJ, Pilla S, et al. Gold nanoparticles with amonolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Biomaterials, 2009, 30(30):6065-6075.
[9] Tong L, Zhao Y, Huff TB,et al. Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv Mater, 2007, 19(20):3136-3141.
[10] Yang PH, Sun X, Chiu JF, et al. Transferrin-mediated gold nanoparticle cellular uptake.Bioconjug Chem, 2005, 16(3):494-496.
[11] Krause W. Delivery of diagnostic agents in computed tomography. Adv Drug Deliv Rev, 1999, 37(1-3):159-173.
[12] 范旭,郭志睿,曹敏,等.基于金纳米颗粒的CT造影剂.CT理论与应用研究,2009, 18(4):15-25.
[13] Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Berlin:Spring-Verlag, 1988:37.
[14] Popovtzer R, Agrawal A, Kotov NA,et al. Targeted gold nanoparti-cles enable molecular CT imaging of cancer. Nano Lett, 2008, 8(12):4593-4596.
[15] Hainfeld JF, Slatkin DN, Focella TM, et al. Gold nanoparticles:A new X-ray contrast agent. Br J Radiol, 2006, 79(939):248-253.
[16] Cho WS, Kim S, Han BS,et al. Comparison of gene expression pro-files in mice liver following intravenous injection of 4 and 100nm-sized PEC-coated gold nanoparticles.Toxicol Lett, 2009, 191(1):96-102.
[17] 赵琢,王利兵,张园,等.纳米物质生物安全性研究进展.纳米科技,2008, 5(2):61-65.
[18] 叶娟平,刘韬,戴昆伦,等.放射增敏剂的临床研究进展.医药导报,2009, 28(7):893-896.
[19] Liu CJ, Wang CH, Chien CC,et al. Enhanced x-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification. Nanotech-nology, 2008, 19(29):95-104.
[20] Kong T, Zeng J, Wang XP,et al. Enhancement of radiation cytotoxi-city in breast-cancer cells by localized attachment of gold nanopar-ticles. Small, 2008, 9(4):1537-1543.
[21] Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparti-cles to enhance radiotherapy in mice.Phys Med Biol, 2004, 49(18):309-315.
[22] El-Sayed IH, Huang X, El-Sayed MA. Selective laser photohermal therapy of epithelial carcinoma using anti-EGFR antibody conju-ated gold nanoparticles. Cancer Lett, 2006, 239(1):129-135.
[23] Attix FH. Introduction to radiological physics and radiation dosimetry. New York:Wiley, 1991:124-159.
[24] Herold DM, Das IJ, Stobbe CC. Cold microspheres:a selective tech-nique for producing biologically effective dose enhancement. Int J Radiat Biol, 2000, 76(10):1357-1364.
[25] Nel A, Xia T, M dler L, Li N. Toxic potential of materials at the nanolevel. Science,2006, 311(5761):622-627.
[26] Turner J, Koumenis C, Kute TE,et al. Tachpvridine,a metal chela-tor, induces G2 cell-cycle arrest, activates checkpoint kinases, and sensitizes cells to ionizing radiation. Blood, 2005, 106(9):3191-3199.
[27] Loo C, Lowery A, Hulas N, et al. Immunotargeted nanoshells for Integrated cancer imaging and therapy. Nano Letters, 2005, 5(4):709-711.
[28] Lapotko D, Lukianova E, Potapnev M,et al. Method of laser acti-vated nano-thermolysis for elimination of tumor cell. Cancer Lett, 2006, 239(1):36-45.

相似文献/References:

[1]何燕,苏晋,郑晓霞,等.P-糖蛋白抑制剂在PET显像中的应用研究[J].国际放射医学核医学杂志,2016,40(1):1.[doi:10.3760/cma.j.issn.1673-4114.2016.01.001]
 He Yan,Su Jin,ZhengXiaoxia,et al.Developing P-glycoprotein inhibitor marked by PET[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(1):1.[doi:10.3760/cma.j.issn.1673-4114.2016.01.001]
[2]周玉祥,蓝博文,黄春榆,等.64排螺旋CT冠状动脉血管成像诊断冠状动脉-肺动脉瘘的应用价值[J].国际放射医学核医学杂志,2016,40(1):26.[doi:10.3760/cma.j.issn.1673-4114.2016.01.006]
 Zhou Yuxiang,Lan Bowen,Huang Chunyu,et al.Clinical value of coronary artery-pulmonary artery fistula revealed by 64-slice spiral CT coronary angiography[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(1):26.[doi:10.3760/cma.j.issn.1673-4114.2016.01.006]
[3]陈超坤,刘亮,傅飞先,等.囊性胸腺瘤和囊性畸胎瘤的影像学特征及鉴别诊断[J].国际放射医学核医学杂志,2016,40(1):31.[doi:10.3760/cma.j.issn.1673-4114.2016.01.007]
 Chen Chaokun,Liu Liang,Fu Feixian,et al.Imaging features and differential diagnosis of cystic thymoma and cystic teratoma[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(1):31.[doi:10.3760/cma.j.issn.1673-4114.2016.01.007]
[4]许飞,刘建军,黄钢,等.PET乏氧显像在预测肿瘤乏氧及指导临床治疗中的应用进展[J].国际放射医学核医学杂志,2016,40(1):35.[doi:10.3760/cma.j.issn.1673-4114.2016.01.008]
 Xu Fei,Liu Jianjun,Huang Gang,et al.The application of hypoxia imaging with PET in predicting tumor hypoxia and guiding clinical therapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(1):35.[doi:10.3760/cma.j.issn.1673-4114.2016.01.008]
[5]岳进,苏丽萍.全身MRI与PET/CT在淋巴瘤骨髓浸润诊断及预后中的作用[J].国际放射医学核医学杂志,2016,40(1):50.[doi:10.3760/cma.j.issn.1673-4114.2016.01.010]
 Yue Jin,Su Lipin.Function of whole-body MRI and PET/CT in the diagnosis and prognosis of lymphoma with bone marrow infiltration[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(1):50.[doi:10.3760/cma.j.issn.1673-4114.2016.01.010]
[6]张莹莹,王振光,孔艳.PET/CT显像在肺间质纤维化中的应用进展[J].国际放射医学核医学杂志,2016,40(1):55.[doi:10.3760/cma.j.issn.1673-4114.2016.01.011]
 Zhang Yingying,Wang Zhenguang,Kong Yan.Application advancement on PET/CT in pulmonary interstitial fibrosis[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(1):55.[doi:10.3760/cma.j.issn.1673-4114.2016.01.011]
[7]麦卫平,张永林.能谱CT成像在肺癌诊断中的应用研究进展[J].国际放射医学核医学杂志,2016,40(1):77.[doi:10.3760/cma.j.issn.1673-4114.2016.01.015]
 Mai Weiping,Zhang Yonglin.Research progress of spectral imaging in the diagnosis of lung cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(1):77.[doi:10.3760/cma.j.issn.1673-4114.2016.01.015]
[8]史文杰,孟召伟,谭建.基于Deauville标准探讨18F-FDG PET/CT在霍奇金淋巴瘤复发诊断中的应用价值[J].国际放射医学核医学杂志,2016,40(2):120.[doi:10.3760/cma.j.issn.1673-4114.2016.02.007]
 Shi Wenjie,Meng Zhaowei,Tan Jian.Value of 18F-FDG PET/CT on diagnosis of Hodgkin lymphoma recurrence using Deauville criterion[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(1):120.[doi:10.3760/cma.j.issn.1673-4114.2016.02.007]
[9]陈顺军,程兵.肿瘤细胞凋亡核素显像分子探针研究进展[J].国际放射医学核医学杂志,2016,40(2):149.[doi:10.3760/cma.j.issn.1673-4114.2016.02.013]
 Chen Shunjun,Cheng Bing.Progress in molecular probes of radionuclide tumor apoptosis imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(1):149.[doi:10.3760/cma.j.issn.1673-4114.2016.02.013]
[10]周翠屏,廖俊杰,何国华,等.原发性肠系膜巨大淋巴结增生症的MSCT表现与病理对照分析[J].国际放射医学核医学杂志,2016,40(3):175.[doi:10.3760/cma.j.issn.1673-4114.2016.03.003]
 Zhou Cuiping,Liao Junjie,He Guohua,et al.Primary mesenteric Castleman disease:MSCT findings with histopathologic correlation[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(1):175.[doi:10.3760/cma.j.issn.1673-4114.2016.03.003]
[11]陆东燕,侯莎莎,丁恩慈,等.结核性与恶性腹膜弥漫性病变的18F-FDG PET/CT影像特征分析[J].国际放射医学核医学杂志,2014,38(6):398.[doi:10.3760/cma.j.issn.1673-4114.2014.06.012]
 Lu Dong-yan,Hou Sha-sha,Ding En-ci,et al.Analysis of 18F-FDG PET/CT imaging features of tuberculous and cancerous diffuse peritoneal lesions[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(1):398.[doi:10.3760/cma.j.issn.1673-4114.2014.06.012]
[12]刘春利,李毅红.18F-FDG PET/CT在原发灶不明的脑转移瘤中的诊断价值[J].国际放射医学核医学杂志,2013,37(2):92.[doi:10.3760/cma.j.issn.1673-4114.2013.02.008]
 LIU Chun-li,LI Yi-hong.The value of 18F-FDG PET/CT in diagnosing brain metastases from unknown primary tumor[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(1):92.[doi:10.3760/cma.j.issn.1673-4114.2013.02.008]
[13]王胜军,杨卫东,赵小虎,等.18F-FDG PET/CT诊断多发癌的价值[J].国际放射医学核医学杂志,2013,37(2):96.[doi:10.3760/cma.j.issn.1673-4114.2013.02.009]
 WANG Sheng-jun,YANG Wei-dong,ZHAO Xiao-hu,et al.Value of 18F-FDG PET/CT in the diagnosis of multiple primary malignant neoplasms[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(1):96.[doi:10.3760/cma.j.issn.1673-4114.2013.02.009]
[14]唐宇辉,陈跃.PET/CT在儿科恶性肿瘤中的应用进展[J].国际放射医学核医学杂志,2013,37(2):107.[doi:10.3760/cma.j.issn.1673-4114.2013.02.012]
 TANG Yu-hui,CHEN Yue.The progression of PET/CT in pediatric malignant tumors[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(1):107.[doi:10.3760/cma.j.issn.1673-4114.2013.02.012]
[15]孙爱君,任茜,刘健,等.11C-乙酸盐PET和PET/CT在肿瘤显像中的应用[J].国际放射医学核医学杂志,2013,37(4):243.[doi:10.3760/cma.j.issn.1673-4114.2013.04.013]
 SUN Ai-jun,REN Qian,LIU Jian,et al.The application of 11C-acetate PET and PET-CT for tumors[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(1):243.[doi:10.3760/cma.j.issn.1673-4114.2013.04.013]
[16]辛军,赵周社,李红,等.自适应统计迭代重建技术在PET/CT全身扫描中的应用[J].国际放射医学核医学杂志,2013,37(5):279.[doi:10.3760/cma.j.issn.1673-4114.2013.05.007]
 XIN Jun,ZHAO Zhou-she,LI Hong,et al.Adaptive statistical iterative reconstruction technology in the application of PET/CT whole body scans[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(1):279.[doi:10.3760/cma.j.issn.1673-4114.2013.05.007]
[17]汪会,徐慧琴.肿瘤乏氧显像剂的研究进展[J].国际放射医学核医学杂志,2012,36(6):366.[doi:10.3760/cma.j.issn.1673-4114.2012.06.011]
 WANG Hui,XU Hui-qin.Advances in study of tumor hypoxia imaging agents[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(1):366.[doi:10.3760/cma.j.issn.1673-4114.2012.06.011]
[18]汪太松,赵晋华,宋建华.PET-MRI和多模式肿瘤显像[J].国际放射医学核医学杂志,2011,35(5):261.[doi:10.3760/cma.j.issn.1673-4114.2011.05.002]
 WANG Tai-song,ZHAO Jin-hua,SONG Jian-hua.PET-MRI and multimodal cancer imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2011,35(1):261.[doi:10.3760/cma.j.issn.1673-4114.2011.05.002]
[19]周敏,魏秋霞,林俊杰,等.良恶性肿瘤18F-FDG符合线路显像的临床价值[J].国际放射医学核医学杂志,2011,35(5):279.[doi:10.3760/cma.j.issn.1673-4114.2011.05.006]
 ZHOU Min,WEI Qiu-xia,LIN Jun-jie,et al.18F-FDG coincidence imaging for the detection of benign and malignant neoplasm[J].International Journal of Radiation Medicine and Nuclear Medicine,2011,35(1):279.[doi:10.3760/cma.j.issn.1673-4114.2011.05.006]
[20]王冬艳,苏成海.PET、PEP-CT与磁共振弥散加权成像在肿瘤诊断中的对比研究进展[J].国际放射医学核医学杂志,2011,35(6):339.[doi:10.3760,cma.j.issn.1673-4114.2011.06.005]
 WANG Dong-yan,SU Cheng-hai.Progression of comparison study between PET or PET-CT and magnetic resonance diffusion-weighted imaging in the investigation of tumor[J].International Journal of Radiation Medicine and Nuclear Medicine,2011,35(1):339.[doi:10.3760,cma.j.issn.1673-4114.2011.06.005]

备注/Memo

备注/Memo:
收稿日期:2010-06-03。
通讯作者:涂彧(Email:tuvu@suda.edu.cn)
更新日期/Last Update: 1900-01-01