[1]刘成,程竞仪,章英剑.碳离子射线诱导细胞凋亡的研究进展[J].国际放射医学核医学杂志,2018,(1):58-61,79.[doi:10.3760/cma.j.issn.1673-4114.2018.01.011]
 Liu Cheng,Cheng Jingyi,Zhang Yingjian.Progress in cell apoptosis induced by carbon ion beam[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(1):58-61,79.[doi:10.3760/cma.j.issn.1673-4114.2018.01.011]
点击复制

碳离子射线诱导细胞凋亡的研究进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
期数:
2018年第1期
页码:
58-61,79
栏目:
综述
出版日期:
2018-03-20

文章信息/Info

Title:
Progress in cell apoptosis induced by carbon ion beam
作者:
刘成1 程竞仪12 章英剑12
1. 200032 上海, 复旦大学附属肿瘤医院核医学科;
2. 201321, 上海市质子重离子医院核医学科
Author(s):
Liu Cheng1 Cheng Jingyi12 Zhang Yingjian12
1. Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China;
2. Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China
关键词:
碳离子细胞凋亡肿瘤
Keywords:
Carbon ionCell apoptosisNeoplasms
DOI:
10.3760/cma.j.issn.1673-4114.2018.01.011
摘要:
碳离子射线治疗肿瘤是利用其剂量分布优势,将能量集中于肿瘤组织释放,同时尽量避免损伤周围正常组织。相较于常规光子射线,碳离子不仅表现出上述物理学优势,还具有优越的生物学特性。笔者概述了碳离子射线在物理、生物学方面的特点,并着重综述了其在诱导细胞凋亡方面的进展。
Abstract:
Compared with conventional radiation beams, heavy ion beam excels in its physical properties and biological characteristics. Limited energy release is absorbed by normal tissue before reaching the tumor while the energy bursts at the target region. This review presents the physical properties and biological characteristics of carbon ion beam and emphasizes recent progresses on apoptosis.

参考文献/References:

[1] Hall E. Protons for radiotherapy:a 1946 proposal[J]. Lancet Oncol, 2009, 10(2):196. DOI:10.1016/s1470-2045(09)70022-1.
[2] Tobias CA, Lyman JT, Chatterjee A, et al. Radiological physics characteristics of the extracted heavy ion beams of the bevatron[J].Science, 1971, 174(4014):1131-1134. DOI:10.1126/science.174.4014.1131.
[3] Okayasu R. Repair of DNA damage induced by accelerated heavy ions-a mini review[J]. Inter J Cancer, 2012, 130(5):991-1000. DOI:10.1002/ijc.26445.
[4] Matsumoto Y, Matsuura T, Wada M, et al. Enhanced radiobiological effects at the distal end of a clinical proton beam:in vitro study[J]. J Radiat Res, 2014, 55(4):816-822.DOI:10.1093/jrr/rrt230.
[5] Loeffler JS, D urante M. Charged particle therapy-optimization, challenges and future directions[J]. Nat Rev Clin Oncol, 2013, 10(7):411-424. DOI:10.1038/nrclinonc.2013.79.
[6] Yoo SH, Cho I, Cho S, et al. Effective Generation of the spread-out-Bragg peak from the laser accelerated proton beams using a carbon-proton mixed target[J]. Australas Phys Eng Sci Med, 2014, 37(4):635-644. DOI:10.1007/s13246-014-0292-7.
[7] Paganetti H.Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer[J]. Phys Med Biol, 2014, 59(22):R419-R472. DOI:10.1088/0031-9155/59/22/R419.
[8] Held KD, Kawamura H, Kaminuma T, et al. Effects of charged particles on human tumor cells[J/OL]. Front Oncol, 2016, 6:23[2017-11-10]. https://www.frontiersin.org/articles/10.3389/fonc.2016.00023/full. DOI:10.3389/fonc.2016.00023.
[9] Tsujii H, Kamada T. A review of update clinical results of Carbon ion radiotherapy[J]. Jpn J Clin Oncol, 2012, 42(8):670-685. DOI:10.1093/jjco/hys104.
[10] Alexander BM, Pinnell N, Wen PY, et al.Targeting DNA repair and the cell cycle in glioblastoma[J]. J Neurooncol, 2012, 107(3):463-477.DOI:10.1007/s11060-011-0765-4.
[11] Suetens A, Konings K, Moreels M, et al. Higher initial DNA damage and persistent cell cycle arrest after Carbon ion irradiation compared to X-irradiation in prostate and colon cancer cells[J/OL].Front Oncol, 2016, 6:87[2017-11-10]. https://www.frontiersin.org/articles/10.3389/fonc.2016.00087/full. DOI:10.3389/fonc.2016. 00087.
[12] Wang H, Liu S, Zhang P, et al. S-phase cells are more sensitive to high-linear energy transfer radiation[J]. Int J Radiat Oncol Biol Phys, 2009, 74(4):1236-1241. DOI:10.1016/j.ijrobp.2008.12.089.
[13] Hirayama R, Uzawa A, Obara M, et al. Determination of the relative biological effectiveness and Oxygen enhancement ratio for micronuclei formation using high-LET radiation in solid tumor cells:An in vitro and in vivo study[J]. Mut Res Genet Toxicol Environ Mutagen, 2015, 793:41-47. DOI:10.1016/j.mrgentox.2015.08.003.
[14] Lin BR, Li D, Zhang L. Oxymatrine mediates Bax and Bcl-2 expression in human breast cancer MCF-7 cells[J]. Pharmazie, 2016,71(3):154-157. DOI:10.1691/ph.2016.5765.
[15] Li C, Wu X, Sun R, et al.Croton tiglium extract induces apoptosis via Bax/Bcl-2 pathways in human lung cancer a549 cells[J]. Asian Pac J Cancer Prev, 2016, 17(11):4893-4898. DOI:10.22034/APJCP.2016.17.11.4893.
[16] Khodapasand E, Jafarzadeh N, Farrokhi F, et al. Is Bax/Bcl-2 ratio considered as a prognostic marker with age and tumor location in colorectal cancer?[J]. Iran Biomed J, 2015,19(2):69-75. DOI:10. 6091/ibj.1366.2015.
[17] Delbridge AR, Grabow S, Strasser A, et al.Thirty years of Bcl-2:translating cell death discoveries into novel cancer therapies[J]. Nat Rev Cancer, 2016, 16(2):99-109. DOI:10.1038/nrc.2015.17.
[18] Hamada N, Hara T, Omura-Minamisawa MA, et al. Energetic heavy ions overcome tumor radioresistance caused by overexpression of Bcl-2[J]. Radiother Oncol, 2008, 89(2):231-236. DOI:10.1016/j.radonc.2008.02.013.
[19] Sato T, Hamada N. Model assembly for estimating cell surviving fraction for both targeted and nontargeted effects based on microdosimetric probability densities[J/OL]. PLoS One, 2014, 9(11):0114056[2017-11-10].http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0114056. DOI:10.1371/journal.pone.0114056.
[20] Xue L, Furusawa Y, Okayasu R, et al.The complexity of DNA double Strand break is a crucial factor for activating ATR signaling pathway for G2/M checkpoint regulation regardless of ATM function[J]. DNA repair, 2015, 25:72-83. DOI:10.1016/j.dnarep.2014.11.004.
[21] Di CX, Yang LN, Zhang H, et al. Effects of carbon-ion beam or X-ray irradiation on anti-apoptosisΔNp73 expression in HeLa cells[J].Gene, 515(1):208-213. DOI:10.1016/j.gene.2012.11.040.
[22] Abdelhaleem EF, Abdelhameid MK, Kassab AE, et al. Design and synthesis of thienopyrimidine urea derivatives with potential cytotoxic and pro-apoptotic activity against breast cancer cell line MCF-7[J]. Eur J Med Chem, 2018, 143:1807-1825. DOI:10.1016/j.ejmech, 2017.10.075.
[23] Moshrefi M, Spotin A, Kafil HS, et al. Tumor suppressor p53 induces apoptosis of host lymphocytes experimentally infected by Leishmania major, by activation of Bax and caspase-3:a possible survival mechanism for the parasite[J]. Parasitol Res, 2017, 116(8):2159-2166. DOI:10.1007/s00436-017-5517-8.
[24] Song HY, Deng XH, Yuan GY, et al. Expression of bcl-2 and p53 in induction of esophageal cancer cell apoptosis by ECRG2 in combination with cisplatin[J]. Asian Pa J Cancer Prev, 2014, 15(3):1397-1401.DOI:10.7314/APJCP.2014.15.3.1397.
[25] Zhao YF, Wang LX, Huang QY, et al.Radiosensitization of non-small cell lung cancer cells by inhibition of TGF-beta 1 signaling with SB431542 is dependent on p53 status[J]. Oncol Res, 2016, 24(1):1-7. DOI:10.3727/096504016X14570992647087.
[26] Mirzayans R, Andrais B, Scott A, et al. New insights into p53 signaling and cancer cell response to DNA damage:implications for cancer therapy[J/OL]. J Biomed Biotechnol, 2012:170325[2017-11-10]. https://www.hindawi.com/journals/bmri/2012/170325/. DOI:10.1155/2012/170325.
[27] Amornwichet N, Oike T, Shibata AA, et al. Carbon-Ion beam irradiation kills X-ray-resistant p53-Null cancer cells by inducing mitotic catastrophe[J/OL]. PLoS One, 2014, 9(12):0115121[2017-11-10]. http://dx.org/10.1371/journal.pone.0115121. DOI:10.1371/journal. pone.0115121.
[28] He M, Dong C, Konishi T, et al. Differential effects of p53 on bystander phenotypes induced by gamma ray and high LET heavy ion radiation[J]. Life Sci Space Res(Amst), 2014, 1:53-59. DOI:10.1016/j.lssr.2014.02.003.
[29] Nakagawa Y, Takahashi A, Kajihara AA, et al. Depression of p53-independent Akt survival signals in human oral cancer cells bearing mutated p53 gene after exposure to high-LET radiation[J].Biochem Biophys Res Commun, 2012, 423(4):654-660. DOI:10. 1016/j.bbrc.2012.06.004.
[30] Liu K, Zhao XK, Gu J, et al.Effects of C-12(6+) heavy ion beam irradiation on the p53 signaling pathway in HepG2 liver cancer cells[J]. Acta Biochim Biophys Sin (Shanghai), 2017, 49(11):989-998. DOI:10.1093/abbs/gmx096.
[31] Alphonse G, Maalouf M, Battiston MP, et al. p53-independent early and late apoptosis is mediated by ceramide after exposure of tumor cells to photon or Carbon ion irradiation[J]. BMC Cancer, 2013, 13:151. DOI:10.1186/1471-2407-13-151.
[32] Yamakawa N, Takahashi A, Mori E, et al. High LET radiation enhances apoptosis in mutated p53 cancer cells through Caspase-9 activation[J]. Cancer Sci, 2008, 99(7):1455-1460. DOI:10.1111/j.1349-7006.2008.00818.x.
[33] Tomiyama A, Tachibana K, Suzuki K, et al. MEK-ERK-dependent multiple caspase activation by mitochondrial proapoptotic Bcl-2 family proteins is essential for heavy ion irradiation-induced glioma cell death[J/OL]. Cell Death Disease, 2010, 1:e60[2017-11-10]. https://www.nature.com/articles/cddis201037. DOI:10.1038/cddis,2010.37.
[34] Xu H, Gao L, Che TJ, et al.The effects of C-12(6+) irradiation on cell cycle, apoptosis, and expression of caspase-3 in the human lung cancer cell line H1299[J]. Cancer Biotherapy Radiopharm, 2012, 27(2):113-118. DOI:10.1089/cbr.2011.1037.
[35] Ghorai A, Bhattacharyya NP, Sarma A, et al. Radiosensitivity and induction of apoptosis by high LET Carbon ion beam and low LET gamma radiation:a comparative study[J/OL]. Scientifica (Cairo), 2014:438030[2017-11-10]. https://www.hindawi.com/journals/scientifica/2014/438030/. DOI:10.1155/2014/438030.
[36] Ghorai A, Sarma A, Bhattacharyya NP. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis[J]. Apoptosis, 2015, 20(4):562-580. DOI:10.1007/s10495-015-1107-3.

相似文献/References:

[1]陈顺军,程兵.肿瘤细胞凋亡核素显像分子探针研究进展[J].国际放射医学核医学杂志,2016,40(2):149.[doi:10.3760/cma.j.issn.1673-4114.2016.02.013]
 Chen Shunjun,Cheng Bing.Progress in molecular probes of radionuclide tumor apoptosis imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(1):149.[doi:10.3760/cma.j.issn.1673-4114.2016.02.013]
[2]张俊伶,薛晓蕾,李源,等.富氢水对电离辐射引起胸腺细胞损伤的影响[J].国际放射医学核医学杂志,2015,39(5):358.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 001]
 zhang junling,xue xiaolei,li yuan,et al.effects of hydrogen-rich water on radiation-induced thymus injury[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(1):358.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 001]
[3]安淑娴,宋少莉,黄钢.放射性核素标记的凋亡显像剂的研究进展[J].国际放射医学核医学杂志,2015,39(6):470.[doi:10.3760/cma.j.issn.1673-4114.2015.06.008]
 An Shuxian,Song Shaoli,Huang Gang.Recent advances in apoptosis imaging using radionuclide-labeled tracers[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(1):470.[doi:10.3760/cma.j.issn.1673-4114.2015.06.008]
[4]徐畅,王彦,杜利清,等.shRNA干扰沉默Net1基因对电离辐射损伤反应的影响[J].国际放射医学核医学杂志,2013,37(3):135.[doi:10.3760/cma.j.issn.1673-4114.2013.03.002]
 XU Chang,WANG Yan,DU Li-qing,et al.The effects of short hairpin RNA-mediated silencing Net1 on ionizing radiation-induced damage responses[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(1):135.[doi:10.3760/cma.j.issn.1673-4114.2013.03.002]
[5]郭艳婷,张鹏飞,刘强.Smac与肿瘤放射治疗[J].国际放射医学核医学杂志,2013,37(5):309.[doi:10.3760/cma.j.issn.1673-4114.2013.05.014]
 GUO Yan-ting,ZHANG Peng-fei,LIU Qiang.Effects of Smac on tumor radiotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(1):309.[doi:10.3760/cma.j.issn.1673-4114.2013.05.014]
[6]邓惠兴,马爱群.核医学影像技术在心肌炎诊断中的应用[J].国际放射医学核医学杂志,2009,33(1):39.[doi:10.3760/cma.j.issn.1673-4114.2009.01.039]
 DENG Hui-xing,MA Ai-qun.The application of radionuclide imaging technology in myocarditis[J].International Journal of Radiation Medicine and Nuclear Medicine,2009,33(1):39.[doi:10.3760/cma.j.issn.1673-4114.2009.01.039]
[7]尹培,边艳珠.体内凋亡细胞显像的研究进展[J].国际放射医学核医学杂志,2009,33(5):279.[doi:10.3760/cnla.j.issn.1673-4114.2009.05.007]
 YIN Pei,BIAN Yan-zhu.Development of apoptosis imaging in vivo[J].International Journal of Radiation Medicine and Nuclear Medicine,2009,33(1):279.[doi:10.3760/cnla.j.issn.1673-4114.2009.05.007]
[8]张颖,林军.125I粒子治疗对肝癌细胞凋亡及细胞周期的影响[J].国际放射医学核医学杂志,2009,33(4):193.[doi:10.3760/cma.j.issn.1673-4114.2009.04.001]
 ZHANG Ying,LIN Jun.Effects of 125I seed brachytherapy on apoptosis and cell cycle distribution in hepatoma carcinoma cells[J].International Journal of Radiation Medicine and Nuclear Medicine,2009,33(1):193.[doi:10.3760/cma.j.issn.1673-4114.2009.04.001]
[9]杨岩,王娟,王冠军.低剂量辐射对人骨髓间充质干细胞影响的研究[J].国际放射医学核医学杂志,2008,32(3):183.
 YANG Yan,WANG Juan,WANG Guan-jun.Study on human mesenchymal stem cells from bone marrow pretreated with low dose radiation[J].International Journal of Radiation Medicine and Nuclear Medicine,2008,32(1):183.
[10]张敬勉,赵新明,王建方,等.99Tc-亚甲基二膦酸盐与153Sm-乙二胺四亚甲基膦酸对骨侵袭和骨质溶解抑制作用的对比研究[J].国际放射医学核医学杂志,2008,32(6):321.
 ZHANG Jing-mian,ZHAO Xin-ming,WANG Jian-fang,et al.The comparative study of inhibitory effects of 99Tc-methylenediphosphonate and 153Sm-ethylene diamine tetramethylene phosphonic acid on bone invasion and osteolysis[J].International Journal of Radiation Medicine and Nuclear Medicine,2008,32(1):321.

备注/Memo

备注/Memo:
收稿日期:2017-11-13。
基金项目:上海浦东新区科技发展基金(PKJ2016-Y42)
通讯作者:程竞仪,Email:jingyi.cheng@sphic.org.cn
更新日期/Last Update: 2018-03-20