[1]周金鑫,张一帆.胰岛细胞移植监测的分子影像学进展[J].国际放射医学核医学杂志,2015,39(6):478-482.[doi:10.3760/cma.j.issn.1673-4114.2015.06.009]
 Zhou Jinxin,Zhang Yifan.Research progress of molecular imaging in monitoring islet transplantation[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(6):478-482.[doi:10.3760/cma.j.issn.1673-4114.2015.06.009]
点击复制

胰岛细胞移植监测的分子影像学进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
39
期数:
2015年第6期
页码:
478-482
栏目:
出版日期:
2015-11-25

文章信息/Info

Title:
Research progress of molecular imaging in monitoring islet transplantation
作者:
周金鑫 张一帆
200025, 上海交通大学附属瑞金医院核医学科
Author(s):
Zhou Jinxin Zhang Yifan
Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
关键词:
胰岛移植正电子发射断层显像术磁共振成像超声检查生物发光成像
Keywords:
Islets of langerhans transplantationPositron-emission tomographyMagnetic resonance imagingUltrasonographyBioluminescent imaging
DOI:
10.3760/cma.j.issn.1673-4114.2015.06.009
摘要:
糖尿病已成为危害人类健康的常见病和多发病。胰岛细胞移植为糖尿病治疗带来新的希望。近年来,分子影像学技术包括光学显像、核素显像、MRI及超声成像等,可在活体条件下无创地进行移植的胰岛细胞显像,为胰岛细胞移植监测提供了灵敏及特异的监测方法。特别是近年来胰高血糖素样肽1类似物胰岛细胞显像的成功,为胰岛细胞移植监测提供了崭新的方法,显示了良好的应用前景。
Abstract:
Diabetes is significant public health problem. Islet transplantation has been a promising treatment for diabetes. Recently, molecular imaging methods like optical imaging, radionuclide imaging, MRI and US, could monitor islet transplantation in vivo via non-invasive way and provide high sensitive and specific monitoring methods for islet transplantation. Especially in recent years, the success of islet cell imaging with the glucagon like peptide 1 analogue, brings a new method for the monitoring of islet cell transplantation and demonstrates favorable prospect in clinical practice.

参考文献/References:

[1] Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030[J]. Diabetes Res Clin Pract, 2010, 87(1):4-14.
[2] Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen[J]. N Engl J Med, 2000, 343(4):230-238.
[3] Arifin DR, Bulte JW. Imaging of pancreatic islet cells[J]. Diabetes Metab Res Rev, 2011, 27(8):761-766.
[4] Toso C, Isse K, Demetris AJ, et al. Histologic graft assessment after clinical islet transplantation[J]. Transplantation, 2009, 88(11):1286-1293.
[5] Lu Y, Dang H, Middleton B, et al. Bioluminescent monitoring of islet graft survival after transplantation[J]. Mol Ther, 2004, 9(3):428-435.
[6] Virostko J, Radhika A, Poffenberger G, et al. Bioluminescence imaging in mouse models quantifies beta cell mass in the pancreas and after islet transplantation[J]. Mol Imaging Biol, 2010, 12(1):42-53.
[7] Kahraman S, Dirice E, Hapil FZ, et al. Tracing of islet graft survival by way of in vivo fluorescence imaging[J]. Diabetes Metab Res Rev, 2011, 27(6):575-583.
[8] Takahashi Y, Takebe T, Enomura M, et al. High-resolution intravital imaging for monitoring the transplanted islets in mice[J]. Transplant Proc, 2014, 46(4):1166-1168.
[9] Krishnan R, Arora RP, Alexander M, et al. Noninvasive evaluation of the vascular response to transplantation of alginate encapsulated islets using the dorsal skin-fold model[J]. Biomaterials, 2014, 35(3):891-898.
[10] Toso C, Zaidi H, Morel P, et al. Positron-emission tomography imaging of early events after transplantation of islets of Langerhans[J]. Transplantation, 2005, 79(3):353-355.
[11] Eriksson O, Eich T, Sundin A, et al. Positron emission tomography in clinical islet transplantation[J]. Am J Transplant, 2009, 9(12):2816-2824.
[12] Lu Y, Dang H, Middleton B, et al. Noninvasive imaging of islet grafts using positron-emission tomography[J]. Proc Natl Acad Sci USA, 2006, 103(30):11294-11299.
[13] Lu Y, Dang H, Middleton B, et al. Long-term monitoring of transplanted islets using positron emission tomography[J]. Mol Ther, 2006, 14(6):851-856.
[14] Liu S, Pan Y, Lv J, et al. Feasibility of baculovirus-mediated reporter gene delivery for efficient monitoring of islet transplantation in vivo[J]. Nucl Med Biol, 2014, 41(2):171-178.
[15] Simpson NR, Souza F, Witkowski P, et al. Visualizing pancreatic beta-cell mass with[11C]DTBZ[J]. Nucl Med Biol, 2006, 33(7):855-864.
[16] Witkowski P, Sondermeijer H, Hardy MA, et al. Islet grafting and imaging in a bioengineered intramuscular space[J]. Transplantation, 2009, 88(9):1065-1074.
[17] Sweet IR, Cook DL, Lernmark A, et al. Systematic screening of potential beta-cell imaging agents[J]. Biochem Biophys Res Commun, 2004, 314(4):976-983.
[18] Eriksson O, Mintz A, Liu C, et al. On the use of[18F] DOPA as an imaging biomarker for transplanted islet mass[J]. Ann Nucl Med, 2014, 28(1):47-52.
[19] Campbell JE, Drucker DJ. Pharmacology, physiology and mechanisms of incretin hormone action[J]. Cell Metab, 2013, 17(6):819-837.
[20] Brom M, Woliner-Van Der Weg W, Joosten L, et al. Non-invasive quantification of the beta cell mass by SPECT with 111In-labelled exendin[J]. Diabetologia, 2014, 57(5):950-959.
[21] Pattou F, Kerr-Conte J, Wild D. GLP-1-receptor scanning for imaging of human beta cells transplanted in muscle[J]. N Engl J Med, 2010, 363(13):1289-1290.
[22] Wu Z, Todorov I, Li L, et al. In vivo imaging of transplanted islets with 64Cu-DO3A-VS-Cys40-Exendin-4 by targeting GLP-1 receptor[J]. Bioconjug Chem, 2011, 22(8):1587-1594.
[23] Wu Z, Liu S, Hassink M, et al. Development and evaluation of 18F-TTCO-Cys40-Exendin-4:a PET probe for imaging transplanted islets[J]. J Nucl Med, 2013, 54(2):244-251.
[24] Eriksson O, Carlsson F, Blom E, et al. Preclinical evaluation of a 68Ga-labeled biotin analogue for applications in islet transplantation[J]. Nucl Med Biol, 2012, 39(3):415-421.
[25] Liu G, Dou S, Cheng D, et al. Human islet cell MORF/cMORF pretargeting in a xenogeneic murine transplant model[J]. Mol Pharm, 2011, 8(3):767-773.
[26] Liu G, Dou S, Akalin A, et al. Pretargeting vs. Direct targeting of human betalox5 islet cells subcutaneously implanted in mice using an anti-human islet cell antibody[J]. Nucl Med Biol, 2012, 39(5):645-651.
[27] Jirák D, Kríz J, Herynek V, et al. MRI of transplanted pancreatic islets[J]. Magn Reson Med, 2004, 52(6):1228-1233.
[28] Tai JH, Foster P, Rosales A, et al. Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla[J]. Diabetes, 2006, 55(11):2931-2938.
[29] Jin SM, Oh SH, Oh BJ, et al. Benefits of PEGylation in the early post-transplant period of intraportal islet transplantation as assessed by magnetic resonance imaging of labeled islets[J]. Islets, 2014, 6(1):27827[2015-04-06]. http://www.tandfonline.com/dio/full/10.4161/isl.27827.
[30] Toso C, Vallee JP, Morel P, et al. Clinical magnetic resonance imaging of pancreatic islet grafts after Iron nanoparticle labeling[J]. Am J Transplant, 2008, 8(3):701-706.
[31] Malosio ML, Esposito A, Brigatti C, et al. Mr imaging monitoring of Iron labeled pancreatic islets in a small series of patients:islets fate in successful, unsuccessful and Auto-Transplantation[J/OL]. Cell Transplant, 2014, 24(11):2285-2296.
[32] Marzola P, Longoni B, Szilagyi E, et al. In vivo visualization of transplanted pancreatic islets by MRI:comparison between in vivo, histological and electron microscopy findings[J]. Contrast Media Mol Imaging, 2009, 4(3):135-142.
[33] Biancone L, Crich SG, Cantaluppi V, et al. Magnetic resonance imaging of gadolinium-labeled pancreatic islets for experimental transplantation[J]. NMR Biomed, 2007, 20(1):40-48.
[34] Barnett BP, Ruiz-Cabello J, Hota P, et al. Fluorocapsules for improved function, immunoprotection, and visualization of cellular therapeutics with Mr, US, and CT imaging[J]. Radiology, 2011, 258(1):182-191.
[35] Hathout E, Sowers L, Wang R, et al. In vivo magnetic resonance imaging of vascularization in islet transplantation[J]. Transpl Int, 2007, 20(12):1059-1065.
[36] Sakata N, Kodama T, Chen R, et al. Monitoring transplanted islets by high-frequency ultrasound[J]. Islets, 2011, 3(5):259-266.
[37] Sakata N, Goto M, Gumpei Y, et al. Intraoperative ultrasound examination is useful for monitoring transplanted islets:a case report[J]. Islets, 2012, 4(5):339-342.

相似文献/References:

[1]何燕,苏晋,郑晓霞,等.P-糖蛋白抑制剂在PET显像中的应用研究[J].国际放射医学核医学杂志,2016,40(1):1.[doi:10.3760/cma.j.issn.1673-4114.2016.01.001]
 He Yan,Su Jin,ZhengXiaoxia,et al.Developing P-glycoprotein inhibitor marked by PET[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):1.[doi:10.3760/cma.j.issn.1673-4114.2016.01.001]
[2]许飞,刘建军,黄钢,等.PET乏氧显像在预测肿瘤乏氧及指导临床治疗中的应用进展[J].国际放射医学核医学杂志,2016,40(1):35.[doi:10.3760/cma.j.issn.1673-4114.2016.01.008]
 Xu Fei,Liu Jianjun,Huang Gang,et al.The application of hypoxia imaging with PET in predicting tumor hypoxia and guiding clinical therapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):35.[doi:10.3760/cma.j.issn.1673-4114.2016.01.008]
[3]胡伟,赵军.小胶质细胞在AD炎性机制中的作用及其常见PET显像剂的应用进展[J].国际放射医学核医学杂志,2016,40(1):44.[doi:10.3760/cma.j.issn.1673-4114.2016.01.009]
 Hu Wei,Zhao Jun.Microglia’s Alzheimer disease inflammatory mechanisms and progress of its common application in PET imaging agents[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):44.[doi:10.3760/cma.j.issn.1673-4114.2016.01.009]
[4]张莹莹,王振光,孔艳.PET/CT显像在肺间质纤维化中的应用进展[J].国际放射医学核医学杂志,2016,40(1):55.[doi:10.3760/cma.j.issn.1673-4114.2016.01.011]
 Zhang Yingying,Wang Zhenguang,Kong Yan.Application advancement on PET/CT in pulmonary interstitial fibrosis[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):55.[doi:10.3760/cma.j.issn.1673-4114.2016.01.011]
[5]李海峰,张晓军,李云钢,等.国产模块LOOP环改良法合成11C-蛋氨酸[J].国际放射医学核医学杂志,2016,40(2):106.[doi:10.3760/cma.j.issn.1673-4114.2016.02.004]
 Li Haifeng,Zhang Xiaojun,Li Yungang,et al.Synthesis of 11C-methionine on home-made module by the improved LOOP method[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):106.[doi:10.3760/cma.j.issn.1673-4114.2016.02.004]
[6]史文杰,孟召伟,谭建.基于Deauville标准探讨18F-FDG PET/CT在霍奇金淋巴瘤复发诊断中的应用价值[J].国际放射医学核医学杂志,2016,40(2):120.[doi:10.3760/cma.j.issn.1673-4114.2016.02.007]
 Shi Wenjie,Meng Zhaowei,Tan Jian.Value of 18F-FDG PET/CT on diagnosis of Hodgkin lymphoma recurrence using Deauville criterion[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):120.[doi:10.3760/cma.j.issn.1673-4114.2016.02.007]
[7]李海峰,张晓军,张锦明.多巴胺转运蛋白显像剂11C-β-CFT在帕金森病中的应用研究[J].国际放射医学核医学杂志,2016,40(3):218.[doi:10.3760/cma.j.issn.1673-4114.2016.03.011]
 Li Haifeng,Zhang Xiaojun,Zhang Jinming.Review of the use of dopamine transporter imaging agent 11C-β-CFT for diagnosing Parkinson disease[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):218.[doi:10.3760/cma.j.issn.1673-4114.2016.03.011]
[8]尤阳,轩昂,张杰,等.淋巴瘤患者大脑静息葡萄糖代谢改变[J].国际放射医学核医学杂志,2016,40(4):255.[doi:10.3760/cma.j.issn.1673-4114.2016.04.003]
 You Yang,Xuan Ang,Zhang Jie,et al.Changes in resting-state brain glucose metabolism in patients with lymphoma[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):255.[doi:10.3760/cma.j.issn.1673-4114.2016.04.003]
[9]王朋,崔邦平,代文莉,等.18F-FDG PET/CT在前列腺癌中的应用进展[J].国际放射医学核医学杂志,2016,40(4):277.[doi:10.3760/cma.j.issn.1673-4114.2016.04.008]
 Wang Peng,Cui Bangping,Dai Wenli,et al.Progress in the application of 18F-FDG PET/CT in prostate cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):277.[doi:10.3760/cma.j.issn.1673-4114.2016.04.008]
[10]李菲,黄俊星,张俊.18F-FDG PET/CT在食管癌中的临床应用[J].国际放射医学核医学杂志,2016,40(4):282.[doi:10.3760/cma.j.issn.1673-4114.2016.04.009]
 Li Fei,Huang Junxing,Zhang Jun.The clinical application of 18F-FDG PET/CT in esophageal cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):282.[doi:10.3760/cma.j.issn.1673-4114.2016.04.009]

备注/Memo

备注/Memo:
收稿日期:2015-4-6。
基金项目:国家自然科学基金(81171367,81471688)
通讯作者:张一帆,Email:zhang_yifan@126.com
更新日期/Last Update: 1900-01-01