[1]王甜甜,赵晋华.18F-FLT增殖显像机制及前期临床研究[J].国际放射医学核医学杂志,2012,36(1):8-12.[doi:10.3760/cma.j.issn.1673-4114.2012.01.002]
 WANG Tian-tian,ZHAO Jin-hua.The basis of 18F-3’-deoxy-3’-L-fluorothymidine as a proliferation tracer and preclinical study[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(1):8-12.[doi:10.3760/cma.j.issn.1673-4114.2012.01.002]
点击复制

18F-FLT增殖显像机制及前期临床研究(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
36
期数:
2012年第1期
页码:
8-12
栏目:
实验核医学
出版日期:
2012-01-25

文章信息/Info

Title:
The basis of 18F-3’-deoxy-3’-L-fluorothymidine as a proliferation tracer and preclinical study
作者:
王甜甜 赵晋华
200080 上海, 上海交通大学附属第一人民医院核医学科
Author(s):
WANG Tian-tian ZHAO Jin-hua
Department of Nuclear Medicine, the First Peoole’s Hospital, Shanghai Jiaotong University, Shanghai 200080, China
关键词:
细胞增殖18F-脱氧氟代胸苷氟脱氧葡萄糖F18正电子发射断层显像术胸苷激酶
Keywords:
Cell proliferation18F-3’-deoxy-3’-L-fluorothymidineFluorodeoxyglucose F18Positron emission tomographyThymidine kinase
DOI:
10.3760/cma.j.issn.1673-4114.2012.01.002
摘要:
18F-3’-脱氧-3’-L氟代胸苷(18F-FLT)作为一种增殖示踪剂,利用PET可将细胞增殖活动可视化并进行量化评估,为临床提供了一种非侵入性监测抗肿瘤疗效的检查方法。该文讨论了18F-FLT作为增殖示踪剂的机制,并回顾了目前18F-FLT PET临床前期研究的状况。虽然18F-FLT是一种可以反映细胞增殖活动的示踪剂,但也有很多限制:在大部分病例中,其摄取率显著低于目前临床广泛应用的18F-FDG,而且受化疗方案和肿瘤类型的影响,18F-FLT摄取与细胞增殖活动并不总是一致。
Abstract:
18F-3’-deoxy-3’-L-fluorothymidine(F-FLT) has been developed as a proliferation tracer in recent years.Imaging and measurement of proliferation with PET could provide clinicians with a non-invasive tool to monitor the response to anticancer treatment.In this review,the basis of 18F-FLT as a proliferation tracer is discussed.And reviewed the current status of 18F-FLT preclinical researches.Although 18F-FLT is a tracer that visualizes cellular proliferation,it also has certain limitations,for example,in comparison with the most widely used PET tracer 18F-FDG,18F-FLT uptake is significant lower in some tumors,and 18F-FLT uptake does not always reflect the tumor cell proliferation rate cause of the different chemothe-rapy regimens.

参考文献/References:

[1] Wilson IK, Chatterjee S, Wolf W. Synthesis of 3’-fluorn-3’-deoxy-thymidine and studies of its 18F-radiolabeling, as a tracer for the noninvasive monitoring of the biodistribution of drugs against AIDS. J Fluorine Chem, 1991, 55(3):283-289.
[2] Shields AF, Grierson JR, Dohmen BM, et al. Imaging proliferation in vivo with[F-18] FLT and positron emission tomography. Nat Med, 1998,4(11):1334-1336.
[3] Turcotte E, Wiens LW, Grierson JR, et al. Toxicology evaluation of radiotracer doses of 3’-deoxy-3’-[18F]fluorolhymidine (18F-FLT) for human PET imaging:Laboralory analysis of serial blood samples and comparison to previously investigaled therapeutic FI,T doses. BMC Nucl Med, 2007, 7:3.
[4] Spence AM, Muzi M, Link JM, et al. NCI-sponsored trial for the evaluation of safety and preliminary efficacy of FLT as a marker of proliferation in patients with recurrent gliomas:safety studies. Mol Imaging Biol, 2008, 10(5):271-280.
[5] Vesselle H, Grierson J, Peterson LM, et al.18F-Fluorothymidine radiation dosimetry in human PET imaging studies. J Nucl Med, 2003, 44(9):1482-1488.
[6] AI-Saeedi F, Welch AE, Smith TA.[methyl-3H]Choline incorporation into MCF7 tumour cells:correlation with proliferation. Eur J Nucl Med Mol Imaging, 2005, 32(6):660-667.
[7] Breeuwsma AJ, Pruim J, Jongen MM, et al. In vivo uptake of[11C] choline does not correlate with cell proliferation in human prostate cancer. Eur J Nucl Med Mol Imaging, 2005, 32(6):668-673.
[8] Wells P, West C, Jones T, et al. Measuring tumor pharmacodynamic response using PET proliferation probes:the case for 2-[(11)C]-thymidine. Biochim Biophys Acta, 2004,1705(2):91-102.
[9] Mier W, Haberkorn U, Eisenhut M.[18F]FLT; portrait of a proliferation marker. Eur J Nucl Med Mol Imaging, 2002, 29(2):165-169.
[10] Seitz U, Wagner M, Neumaier B, et al. Evaluation of pyrimidine metabolising enzymes and in vitro uptake of 3’-[(18)F]fluoro-3’-deoxythymidine ([18F]FLT)in panereatie cancer cell lines. Eur J Nucl Med Mol Imaging, 2002, 29(9):1174-1181.
[11] Rasey JS, Grierson JR, Wiens LW, et al. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med, 2002, 43(9):1210-1217.
[12] Muzi M, Mankoff DA, Grierson JR, et al. Kinetic modeling of 3’-deoxy-3’-fluorothymidine in somatic tumors:mathematical studies. J Nucl Med, 2005, 46(2):371-380.
[13] Sehiepers C, Chen W, Dahlbom M, et al. 18F-fluorothymidine kinetics of malignant brain tumors. Eur J Nucl Med Mol Imaging, 2007, 34(7):1003-1011.
[14] Muzi M, Vesselle H, Grierson JR, et al. Kinetic analysis of 3’-deoxy-3’-fluorothymidine PET studies:validation studies in patients with lung caneer. J Nucl Med, 2005, 46(2):274-282.
[15] de Langen AJ, Klabbers B, Lubberink M, et al. Reproducibility of quantitative 18F-3’-deoxy-3’-fluorothymidine measurements using positron emission tomography. Eur J Nucl Med Mol Imaging, 2009, 36(3):389-395.
[16] Plotnik DA, McLaughlin LJ, Chan J, et al. The role of nueleoside/nueleotide transport and metabolism in the uptake and retention of 3’-fluoro-3’-deoxythymidine in human B-lymphoblast cells. Nucl Meal Biol, 2011, 38(7):979-986.
[17] Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cercb Blood Flow Metab, 1983, 3(1):1-7.
[18] Menda Y, Boles Ponto LL, Dornfeld KJ, et al. Kinetic analysis of 3’-deoxy-Y-18F-fluorothymidine (18F-FLT) in head and neck cancer patients before and early after initiation of chemoradiation therapy. J Nucl Med, 2009, 50(7):1028-1035.
[19] Barthel H, Perumal M, Latigo J, et al. The uptake of 3’-deoxy-3’-[18F] fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging, 2005, 32(3):257-263.
[20] Barthel H, Cleij MC, Collingridge DR, et al. 3’-deoxy-3’-[18F]fluo-rothymidine as a new marker for monitoring tumor response to anti-proliferative therapy in vivo with positron emission tomography. Cancer Res, 2003, 63(13):3791-3798.
[21] Leyton J, Latigo JR, Perumal M, et al. Early detection of tumor response to chemotherapy by 3’-deoxy-3’-[18F]fluorothymidine positron emission tomography:the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Res, 2005, 65(10):4202-4210.
[22] Jensen MM, Erichsen KD, Bjürkling F, et al. Early detection of res-ponse to experimental chemotherapeutic Top216 with[18F]FLT and[18F]FDG PET in human ovary cancer xenografts in mice. PLoS One, 2010, 5(9):e12965.
[23] Leyton J, Alao JP, Da Costa M, et al. In vivo biological activity of the histone deacetylase inhibitor LAQ824 is detectable with 3’-deoxy-3’-[18F]fluorothymidine positron emission tomography. Cancer Res, 2006, 66(15):7621-7629.
[24] Munch-Petersen B, Cloos k, Jensen HK, et al. Human thymidine kinase 1. Regulation in normal and malignant cells. Adv Enzyme Regul, 1995, 35:69-89.
[25] van Waarde A, Cobben DC, Suurmeijer AJ, et al. Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med, 2004, 45(4):695-700.
[26] Toyohara J, Waki A, Takamatsu S, et al. Basis of FLT as a cell proliferation marker:comparative uptake studies with[3H]thymidine and[3H]arabinothymidine, and cell-analysis in 22 asynchronously growing tumor cell lines. Nucl Med Biol, 2002, 29(3):281-287.
[27] Dittmann H, Dohmen BM, Kehlbach R, et al. Early changes in[18F] FLT uptake after chemotherapy:an experimental study. Eur J Nucl Med Mol Imaging, 2002, 29(11):1462-1469.
[28] 谭业颖,田嘉禾,汤义军等.18F-FLT与18F-FDG评估化疗早期反应的细胞学研究.中国医学影像学杂志,2009(6):442-444.
[29] Sugiyarna M, Sakahara H, Sato K, et al. Evaluation of 3’-deoxy-3’-18F-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. J Nucl Med, 2004, 45(10):1754-1758.
[30] Waldherr C, Mellinghoff IK, Tran C, et al. Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3’-deoxy-3’-18F-fluorothymidine PET. J Nucl Med, 2005, 46(1):114-120.
[31] Oyama N, Ponde DE, Dence C, et al. Monitoring of therapy in androgen-dependent prostate tumor model by measuring tumor proliferation. J Nucl Med, 2004, 45(3):519-525.

相似文献/References:

[1]李峰生,陈肖华.RNA干涉治疗脑胶质瘤的研究进展[J].国际放射医学核医学杂志,2007,31(5):300.
 LI Feng-sheng,CHEN Xiao-hua.Research progress on treatment of glioma with RNA interference[J].International Journal of Radiation Medicine and Nuclear Medicine,2007,31(1):300.
[2]谭业颖.18F-氟脱氧胸苷PET的肿瘤分子显像研究进展[J].国际放射医学核医学杂志,2007,31(1):6.
 TAN Ye-ying.Advances in tumor molecular imaging with 18F-fluorothymidine PET[J].International Journal of Radiation Medicine and Nuclear Medicine,2007,31(1):6.
[3]李雨民,杨凤桐.DNA损伤修复与细胞凋亡[J].国际放射医学核医学杂志,1999,23(3):112.
[4]姜勉,董佳丽,李航,等.HBXIP蛋白表达对宫颈癌细胞的增殖能力及放射敏感性的影响[J].国际放射医学核医学杂志,2017,41(5):340.[doi:10.3760/cma.j.issn.1673-4114.2017.05.007]
 Jiang Mian,Dong Jiali,Li Hang,et al.Effects of HBXIP protein expression on the proliferation and radiosensitivity of cervical cancer cells[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(1):340.[doi:10.3760/cma.j.issn.1673-4114.2017.05.007]
[5]李航,姜勉,樊赛军.长链非编码RNA NBR2对乳腺癌细胞放射敏感性的影响[J].国际放射医学核医学杂志,2018,(2):121.[doi:10.3760/cma.j.issn.1673-4114.2018.02.005]
 Li Hang,Jiang Mian,Fan Saijun.Effect of long non-coding RNA NBR2 on the radiosensitivity of breast cancer cells[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(1):121.[doi:10.3760/cma.j.issn.1673-4114.2018.02.005]
[6]李航,姜勉,樊赛军.MiR-148a对肺癌细胞放射敏感性的影响[J].国际放射医学核医学杂志,2018,(3):248.[doi:10.3760/cma.j.issn.1673-4114.2018.03.010]
 Li Hang,Jiang Mian,Fan Saijun.Effect of miR-148a on the radiosensitivity of lung cancer cells[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(1):248.[doi:10.3760/cma.j.issn.1673-4114.2018.03.010]

备注/Memo

备注/Memo:
收稿日期:2011-10-17。
通讯作者:赵晋华,Email:zjh1963@gmail.com
更新日期/Last Update: 1900-01-01