[1]姜勉,董佳丽,李航,等.HBXIP蛋白表达对宫颈癌细胞的增殖能力及放射敏感性的影响[J].国际放射医学核医学杂志,2017,41(5):340-346.[doi:10.3760/cma.j.issn.1673-4114.2017.05.007]
 Jiang Mian,Dong Jiali,Li Hang,et al.Effects of HBXIP protein expression on the proliferation and radiosensitivity of cervical cancer cells[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(5):340-346.[doi:10.3760/cma.j.issn.1673-4114.2017.05.007]
点击复制

HBXIP蛋白表达对宫颈癌细胞的增殖能力及放射敏感性的影响(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
41
期数:
2017年第5期
页码:
340-346
栏目:
综述
出版日期:
2017-09-25

文章信息/Info

Title:
Effects of HBXIP protein expression on the proliferation and radiosensitivity of cervical cancer cells
作者:
姜勉 董佳丽 李航 樊赛军
300192 天津, 北京协和医学院中国医学科学院放射医学研究所, 天津市放射医学与分子核医学重点实验室
Author(s):
Jiang Mian Dong Jiali Li Hang Fan Saijun
Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
关键词:
HBXIPRNA小分子干扰宫颈肿瘤细胞增殖辐射耐受性
Keywords:
HBXIPRNAsmall interferingUterine cervical neoplasmsCell proliferationRadiation tolerance
DOI:
10.3760/cma.j.issn.1673-4114.2017.05.007
摘要:
目的 探讨用siRNA敲降乙肝病毒X蛋白结合蛋白(HBXIP)的表达对宫颈癌ME-180细胞的增殖能力及放射敏感性的影响。方法 根据不同的处理方法,分别按两种分组方式进行分组。(1)把宫颈癌ME-180细胞分为4组:空白对照组、4 Gy γ射线照射组、HBXIP-siRNA转染组以及HBXIP-siRNA+γ射线照射联合组。采用MTT和克隆形成实验法来检测细胞增殖;采用qRTPCR检测凋亡相关蛋白Bcl-2及Bid的表达;Western blot检测蛋白激酶AKT的磷酸化水平。(2)把宫颈癌ME-180细胞分为3组:空白对照组、HBXIP-siRNA单独处理组、HBXIP-siRNA和AKT共转染组。对3组细胞进行不同剂量的γ射线照射,并采用克隆形成实验方法检测细胞生长。采用Student t-test对数据进行统计学分析,P<0.05表示差异有统计学意义。结果 MTT实验和克隆形成实验结果显示,与γ射线照射组相比,HBXIP-siRNA转染+γ射线照射联合组的宫颈癌ME-180细胞增殖率明显降低(t=11.63、12.17,均P<0.01),并伴随抑凋亡蛋白Bcl-2表达的降低(t=10.88,P<0.01)和促凋亡蛋白Bid表达的增高(t=9.31,P<0.01)。γ射线照射明显上调了HBXIP蛋白的表达水平和AKT蛋白的磷酸化水平,而转染HBXIP-siRNA则抑制了γ射线照射导致的AKT磷酸化水平的升高。另外,与HBXIP-siRNA单独处理组相比,HBXIP-siRNA和AKT共转染组中HBXIP-siRNA对宫颈癌ME-180细胞增殖的影响显著降低(t=8.96,P<0.01)。结论 降低HBXIP蛋白表达可以抑制辐照诱导的AKT磷酸化水平,进而降低宫颈癌ME-180细胞的增殖能力,同时增强其放射敏感性。
Abstract:
Objective To explore the effects of (hepatitis B X-interacting protein) HBXIP downregulation on the proliferation and radiosensitivity of cervical cancer ME-180 cells. Method According to the different treatment methods, cervical cancer ME -180 cells were divided into different groups:(1)The cervical cancer ME -180 cells were divided into 4 groups:control group, 4 Gy γ ray irradiation group, HBXIP-siRNA transfection group and HBXIP-siRNA transfection+γ ray irradiation group. cervical cancer ME-180 cell proliferation was detected by MTT and clonogenic assays. The expression of Bcl-2 and Bid mRNA was detected by quantitative real-time polymerase chain reaction, and the phosphorylation of AKT protein was measured by Western blot analysis. (2)The cervical cancer ME-180 cells were divided into 3 groups:control group, HBXIP-siRNA transfection group and HBXIP-siRNA+AKT transfection group. Then the three groups of cells were irradiated with different doses of γ ray, and the cervical cancer ME-180 cell proliferation was detected by clonogenic assay. Statistical significance of the results was determined by SPSS statistical software and analyzed by Student t-test. P<0.05 were considered statistically significant. Results MTT and clonogenic assays showed that, compared with the cells irradiated alone, the cervical cancer ME-180 cells irradiated in the presence of HBXIP-siRNA had significantly decreased proliferation (t=11.63, 12.17, P<0.01). The decreased proliferation was accompanied by a decreased expression of Bcl-2 protein (t=10.88, P<0.01) and an increased expression of Bid protein (t=9.31, P<0.01). The transfection with HBXIP-siRNA inhibited the increased HBXIP protein expression and AKT phosphorylation, which were caused by radiation. The enhanced AKT expression significantly reduced the HBXIP -siRNA inhibition of cervical cancer ME-180 cell proliferation after irradiation as compared with that of the HBXIP-siRNA alone (t=8.96, P<0.01). Conclusion HBXIP down -regulation reduced the proliferation and increased the radiosensitivity of cervical cancer ME-180 cells by mediating AKT activation.

参考文献/References:

[1] Ghib Para CG, Sferdian MF, Dascǎu V, et al. Clinical and morphological considerations in one case with cervical cancer and right ureterohydronephrosis[J]. Rom J Morphol Embryol, 2016, 57(3):1155-1158.
[2] Baker S, Dahele M, Lagerwaard FJ, et al. A critical review of recent developments in radiotherapy for non-small cell lung cancer[J]. Radiat Onco, 2016, 11(1):115. DOI:10.1186/s13014-016-0693-8.
[3] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2):115-132. DOI:10.3322/caac.21338.
[4] Larson H. The world must accept that the HPV vaccine is safe[J]. Nature, 2015, 528(7580):9. DOI:10.1038/528009a.
[5] Adey A, Burton JN, Kitzman JO, et al. The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line[J]. Nature, 2013, 500(7461):207-211. DOI:10.1038/nature12064.
[6] Wardak S. Human Papillomavirus (HPV) and cervical cancer[J]. Med Dosw Mikrobiol, 2016, 68(1):73-84.
[7] da Silva RM, Pinezi JC, Macedo LE, et al. Current situation of high-dose-rate brachytherapy for cervical cancer in Brazil[J]. Radiol Bras, 2014, 47(3):159-164. DOI:10.1590/0100-3984.2013.1859.
[8] Vargo JA, Beriwal S. Image-based brachytherapy for cervical cancer[J]. World J Clin Oncol, 2014, 5(5):921-930. DOI:10.5306/wjco.v5.i5.921.
[9] Melegari M, Scaglioni PP, Wands JR. Cloning and characterization of a novel hepatitis B virus x binding protein that inhibits viral replication[J]. J Virol, 1998, 72(3):1737-1743.
[10] Zhao Y, Li H, Zhang Y, et al. Oncoprotein HBXIP modulates abnormal lipid metabolism and growth of breast cancer cells by activating the LXRs/SREBP-1c/FAS signaling cascade[J]. Cancer Res, 2016, 76(16):4696-4707. DOI:10.1158/0008-5472.CAN-15-1734.
[11] Li L, Fang R, Liu B, et al. Deacetylation of tumor-suppressor MST1 in Hippo pathway induces its degradation through HBXIP-elevated HDAC6 in promotion of breast cancer growth[J]. Oncogene, 2016, 35(31):4048-4057. DOI:10.1038/onc.2015.476.
[12] Wang Y, Fang R, Cui M, et al. The oncoprotein HBXIP up-regulates YAP through activation of transcription factor c-Myb to promote growth of liver cancer[J]. Cancer Lett, 2017, 385:234-242. DOI:10. 1016/j.canlet.2016.10.018.
[13] Li N, Wang Y, Che S, et al. HBXIP over expression as an Independent biomarker for cervical cancer[J]. Exp Mol Pathol, 2017, 102(1):133-137. DOI:10.1016/j.yexmp.2017.01.009.
[14] Li Y, Wang Z, Shi H, et al. HBXIP and LSD1 scaffolded by lncRNA hotair mediate transcriptional activation by c-Myc[J]. Cancer Res, 2016, 76(2):293-304. DOI:10.1158/0008-5472.CAN-14-3607.
[15] Li H, Liu Q, Wang Z, et al. The oncoprotein HBXIP modulates the feedback loop of MDM2/p53 to enhance the growth of breast cancer[J]. J Biol Chem, 2015, 290(37):22649-22661. DOI:10.1074/jbc.M115.658468.
[16] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66(1):7-30. DOI:10.3322/caac.21332.
[17] Torre LA, Sauer AM, Chen MS, et al.Cancer statistics for Asian Americans, Native Hawaiians, and Pacific Islanders, 2016:Converging incidence in males and females[J]. CA Cancer J Clin, 2016, 66(3):182-202. DOI:10.3322/caac.21335.
[18] Desantis CE, Siegel RL, Sauer AG, et al. Cancer statistics for African Americans, 2016:Progress and opportunities in reducing racial disparities[J]. CA Cancer J Clin, 2016, 66(4):290-308. DOI:10.3322/caac.21340.
[19] Fu ZC, Wang FM, Cai JM. Gene expression changes in residual advanced cervical cancer after radiotherapy:indicators of poor prognosis and radioresistance[J]. Med Sci Monit, 2015, 21:1276-1287. DOI:10.12659/MSM.893689.
[20] Zhao Y, Moran MS, Yang Q, et al. Metadherin regulates radioresistance in cervical cancer cells[J]. Oncol Rep, 2012, 27(5):1520-1526. DOI:10.3892/or.2012.1692.
[21] Garcia-Saez I, Lacroix FB, Blot D, et al. Structural characterization of HBXIP:the protein that interacts with the anti-apoptotic protein survivin and the oncogenic viral protein HBx[J]. J Mol Biol, 2011, 405(2):331-340. DOI:10.1016/j.jmb.2010.10.046.
[22] Du G, Cao D, Meng L. miR-21 inhibitor suppresses cell proliferation and colony formation through regulating the PTEN/AKT pathway and improves paclitaxel sensitivity in cervical cancer cells[J]. Mol Med Rep, 2017, 15(5):2713-2719. DOI:10.3892/mmr.2017.6340.
[23] Zhang E, Shi H, Yang L, et al. Ginsenoside Rd regulates the Akt/mTOR/p70S6K signaling cascade and suppresses angiogenesis and breast tumor growth[J]. Oncol Rep, 2017, 38(1):359-367. DOI:10.3892/or.2017.5652.
[24] Wu J, Hu G, Dong Y, et al. Matrine induces Akt/mTOR signalling inhibition-mediated autophagy and apoptosis in acute myeloid leukaemia cells[J]. J Cell Mol Med, 2017, 21(6):1171-1181. DOI:10.1111/jcmm.13049.
[25] Tan Y, Huang N, Zhang X, et al. KIAA0247 suppresses the prolif-eration, angiogenesis and promote apoptosis of human glioma through inactivation of the AKT and Stat3 signaling pathway[J]. Oncotarget, 2016, 7(52):87100-87113. DOI:10.18632/oncotarget.13527.
[26] Song L, Liu S, Zhang L, et al. MiR-21 modulates radiosensitivity of cervical cancer through inhibiting autophagy via the PTEN/Akt/HIF-1α feedback loop and the Akt-mTOR signaling pathway[J]. Tumour Biol, 2016, 37(9):12161-12168. DOI:10.1007/s13277-016-5073-3.
[27] Shimura T. Targeting the AKT/cyclin D1 pathway to overcome intrinsic and acquired radioresistance of tumors for effective radiotherapy[J]. Int J Radiat Biol, 2017, 93(4):381-385. DOI:10.1080/09553002.2016.1257832.
[28] Liu S, Li L, Zhang Y, et al. The oncoprotein HBXIP uses two pathways to up-regulate S100A4 in promotion of growth and migration of breast cancer cells[J]. J Biol Chem, 2012, 287(36):30228-30239. DOI:10.1074/jbc.M112.343947.

相似文献/References:

[1]杜利清,刘强,王彦,等.Ku70对同源重组修复蛋白Rad51的调节作用[J].国际放射医学核医学杂志,2013,37(5):272.[doi:10.3760/cma.j.issn.1673-4114.2013.05.005]
 DU Li-qing,LIU Qiang,WANG Yan,et al.Regulation of homologous recombination repair protein Rad51 by Ku70[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(5):272.[doi:10.3760/cma.j.issn.1673-4114.2013.05.005]
[2]黄丽娟,陈宁,叶静,等.反义肽核酸对促甲状腺激素受体mRNA表达的影响[J].国际放射医学核医学杂志,2012,36(5):310.[doi:10.3760/cnla.j.issn.1673-4114.2012.05.011]
 HUANG Li-juan,CHEN Ning,YE Jing,et al.The effects of antisense peptide nucleic acid on the expression of thyroid stimulating hormone receptor mRNA[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(5):310.[doi:10.3760/cnla.j.issn.1673-4114.2012.05.011]
[3]李航,姜勉,樊赛军.长链非编码RNA NBR2对乳腺癌细胞放射敏感性的影响[J].国际放射医学核医学杂志,2018,(2):121.[doi:10.3760/cma.j.issn.1673-4114.2018.02.005]
 Li Hang,Jiang Mian,Fan Saijun.Effect of long non-coding RNA NBR2 on the radiosensitivity of breast cancer cells[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(5):121.[doi:10.3760/cma.j.issn.1673-4114.2018.02.005]
[4]陈双景,周平坤,王治东.电离辐射损伤相关长链非编码RNA研究进展[J].国际放射医学核医学杂志,2018,(2):161.[doi:10.3760/cma.j.issn.1673-4114.2018.02.011]
 Shuangjing,Zhou Pingkun,Wang Zhidong.Research advancement on long non-coding RNAs in ionizing radiation-induced damage[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(5):161.[doi:10.3760/cma.j.issn.1673-4114.2018.02.011]

备注/Memo

备注/Memo:
收稿日期:2017-07-02。
基金项目:国家自然科学基金(81572969);科技部科研院所开发项目(2014EG150134)
通讯作者:樊赛军,Email:fansaijun@irm-cams.ac.cn
更新日期/Last Update: 2017-09-25