[1]刘晓梅,张芳,黄建敏.肿瘤血管生成的SPECT分子显像研究进展[J].国际放射医学核医学杂志,2015,39(2):170-174,187.[doi:10.3760/cma.j.issn.1673-4114.2015.02.015]
 Liu Xiaomei,Zhang Fang,Huang Jianmin.Research advance on molecular imaging of tumor angiogenesis with SPECT[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(2):170-174,187.[doi:10.3760/cma.j.issn.1673-4114.2015.02.015]
点击复制

肿瘤血管生成的SPECT分子显像研究进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
39
期数:
2015年第2期
页码:
170-174,187
栏目:
出版日期:
2015-03-25

文章信息/Info

Title:
Research advance on molecular imaging of tumor angiogenesis with SPECT
作者:
刘晓梅 张芳 黄建敏
河北医科大学第三医院核医学科, 石家庄, 050051
Author(s):
Liu Xiaomei Zhang Fang Huang Jianmin
Department of Nuclear Medicine, the Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
关键词:
血管生成血管内皮生长因子αvβ3整合素细胞外基质蛋白前列腺特异性膜抗原体层摄影术发射型计算机单光子
Keywords:
AngiogenesisVascular endothelial growth factorαvβ3 integrinExtracellular matrix proteinsProstate-specific membrane antigeTomography emission-computed single photon
DOI:
10.3760/cma.j.issn.1673-4114.2015.02.015
摘要:
肿瘤血管生成与肿瘤生长、转移有着密切的关系。肿瘤血管生成被各种蛋白分子调控,其中包括血管内皮生长因子、αvβ3整合素、细胞外基质蛋白、前列腺特异性膜抗原等。它们已成为肿瘤血管生成分子影像及靶向治疗研究领域的重要分子靶点。研究并利用这些蛋白分子准确无创地评估肿瘤新生血管及肿瘤抗血管生成治疗效果的成像方法,已成为现代医学影像学的一个重要课题。
Abstract:
Tumor Angiogenesis is one of the key requirements of tumor growth and metastasis. Tumour-induced angiogenesis is a multistep process that controlled by growth factors, cellular receptors and adhesion molecules, such as vascular endothelial growth factor, αvβ3 integrin, extracellular matrix proteins, prostate-specific membrane antige. They have become a common molecular target which has a potential value in angiogenesis molecular imaging and therapy at present. It is an important subject of modern medical imaging in developing a new imaging method which can accurate noninvasive assessment of tumor angiogenesis and tumor anti-angiogenesis therapy effect.

参考文献/References:

[1] Cai W, Chen X. Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor ex-pression[J]. Front Biosci, 2007, 12:4267-4279.
[2] Stacy MR, Maxfield MW, Sinusas AJ. Targeted molecular imaging of angiogenesis in PET and SPECT:a review[J]. Yale J Biol Med, 2012, 85(1):75-86.
[3] Ellis LM, Liu W, Ahmad SA, et al. Overview of angiogenesis:Biologic implications for antiangiogenic therapy[J]. Semin Oncol, 2001, 28(5):94-104.
[4] Lijowski M, Caruthers S, Hu G, et al. High sensitivity:high-reso-lution SPECT-CT/MR molecular imaging of angiogenesis in the Vx2 model[J]. Invest radiology, 2009, 44(1):15-22.
[5] Eliceiri BP, Cheresh DA. Role of alpha v integrins during angiogen-esis[J]. Cancer J, 2000, 6 Supple3:S245-249.
[6] Hynes RO, Bader BL, Hodivala-Dilke K. Integrins in vascular de-velopment[J]. Braz J Med Biol Res, 1999, 32(5):501-510.
[7] Tischer E, Mitchell R, Hartman T, et al. The human gene for vascu-lar endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing[J]. J Biol Chem, 1991, 266(18):11947-11954.
[8] Quinn TP, Peters KG, De Vries C, et al. Fetal liver kinase 1 is a re-ceptor for vascular endothelial growth factor and is selectively ex-pressed in vascular endothelium[J]. Proc Natl Acad Sci USA, 1993, 90(16):7533-7537.
[9] Millauer B, Wizigmann-Voos S, Schnürch H, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis[J]. Cell, 1993, 72(6):835-846.
[10] Yoshimoto M, Kinuya S, Kawashima A, et al. Radioiodinated VEGF to image tumor angiogenesis in a LS180 tumor xenograft model[J]. Nucl Med Biol, 2006, 33(8):963-969.
[11] Blankenberg FG, Mandl S, Cao YA, et al. Tumor imaging using a standardized radiolabeled adapter protein docked to vascular en-dothelial growth factor[J]. J Nucl Med, 2004, 45(8):1373-1380.
[12] Blankenberg FG, Backer MV, Levashova Z, et al. In vivo tumor an-giogenesis imaging with site-specific labeled Tc-99m-HYNIC-VEGF[J]. Eur J Nucl Med Mol Imaging, 2006, 33(7):841-848.
[13] Chan C, Sandhu J, Guha A, et al. A human transferrin-vascular en-dothelial growth factor (hnTf-VEGF)fusion protein containing an integrated binding site for(111) In for imaging tumor angiogenesis[J]. J Nucl Med, 2005, 46(10):1745-1752.
[14] Qin ZX, Li QW, Liu GY, et al. Imaging targeted at tumor with(188) Re-labeled VEGF(189) exon 6-encoded peptide and effects of the transfecting truncated KDR gene in tumor-bearing nude mice[J]. Nucl Med Biol, 2009, 36(5):535-543.
[15] Nagengast WB, de Vries EG, Hospers GA, et al. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft[J]. J Nucl Med, 2007, 48(8):1313-1319.
[16] Nagengast WB, Hooge MN, van Straten EM, et al. VEGF-SPECT with In-111-bevacizumab in stage Ⅲ/IV melanoma patients[J]. Eur J Cancer, 2011, 47(10):1595-1602.
[17] Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease[J]. Nat Med, 1995, 1(1):27-31.
[18] Haubner R, Maschauer S, Einsiedel J, et al. H-CRRETAWAC-OH, a Lead structure for the development of radiotracer targeting inte-grin α5β1?[J/OL]. Biomed Res Int, 2014:243185[2014-10-20]. http://www.hindawi.com/journals/bmri/2014/243185/.
[19] Haubner R, Wester HJ, Burkhart F, et al. Glycosylated RGD-con-taining peptides:tracer for tumor targeting and angiogenesis imaging with improved biokinetics[J]. J Nucl Med, 2001, 42(2):326-336.
[20] van Hagen PM, Breeman WA, Bernard HF, et al. Evaluation of a radiolabelled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy[J]. Int J Cancer, 2000, 90(4):186-198.
[21] Sivolapenko GB, Skarlos D, Pectasides D, Stathopoulou E, et al.Imaging of metastatic melanoma utilising a technetium-99m la-belled RGD-containing synthetic peptide[J]. Eur J Nucl Med, 1998, 25(10):1383-1389.
[22] Fu T, Qu W, Qiu F, et al. 99Tcm-3P-RGD2 micro-single-photon emission computed tomography/computed tomography provides a rational basis for integrin αvβ3-targeted therapy[J]. Cancer Bio-ther Radiopharm, 2014, 29(9):351-358.
[23] Bach-Gansmo T, Bogsrud TV, Skretting A. Integrin scintimam-mography using a dedicated breast imaging, solid-state gamma-camera and(99m) Tc-labelled NC100692[J]. Clin Physiol Funct Imaging, 2008, 28(4):235-239.
[24] Axelsson R, Bach-Gansmo T, Castell-Conesa J, et al. An open-la-bel, multicenter, phase 2a study to assess the feasibility of imaging metastases in late-stage cancer patients with the alpha v beta 3-se-lective angiogenesis imaging agent 99mTc-NC100692[J]. Acta radiol, 2010, 51(1):40-46.
[25] Shi JY, Kim YS, Chakraborty S, et al. Impact of bifunctional chela-tors on biological properties of In-111-labeled cyclic peptide RGD dimers[J]. Amino Acids, 2011, 41(5):1059-1070.
[26] Terry SY, Abiraj K, Lok J, et al. Can 111In-RGD2 monitor response to therapy in head and neck tumor xenografts[J]. J Nucl Med, 2014, 55(11):1849-1855.
[27] Demartis S, Tarli L, Borsi L, et al, Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin[J]. Eur J Nucl Med, 2001, 28(4):534-539.
[28] Berndorff D, Borkowski S, Moosmayer D, et al. Imaging of tumor angiogenesis using 99mTc-labeled human recombinant anti-ED-B fi-bronectin antibody fragments[J]. J Nucl Med, 2006, 47(10):1707-1716.
[29] Chang SS, O’keefe DS, Bacich DJ, et al. Prostate-specific mem-brane antigen is produced in tumor-associated neovasculature[J]. Clin Cancer Res, 1999, 5(10):2674-2681.
[30] Morris MJ, Pandit-Taskar N, Divgi CR, et al. Phase I evaluation of J591 as a vascular targeting agent in progressive solid tumors[J]. Clinical Cancer Research, 2007, 13(9):2707-2713.
[31] Vallabhajosula S, Nikolopoulou A, Babich JW, et al. 99Tcm-labeled small-molecule inhibitors of prostate-specific membrane antigen:pharmacokinetics and biodistribution studies in healthy subjects and patients with metastatic prostate cancer[J]. J Nucl Med, 2014, 55(11):1791-1798.

相似文献/References:

[1]杨明福,李前伟.肿瘤血管内皮生长因子受体核素显像研究现状[J].国际放射医学核医学杂志,2010,34(1):19.[doi:10.3760/cma.j.issn.1673-4114.2010.01.005]
 YANG Ming-fu,LI Qian-wei.Review present study on vascular endothelial growth factor receptor imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2010,34(2):19.[doi:10.3760/cma.j.issn.1673-4114.2010.01.005]
[2]夏俊勇,王火强.以血管内皮生长因子及其受体为靶向的肺癌放射性核素显像[J].国际放射医学核医学杂志,2008,32(2):82.
 XIA Jun-yong,WANG Huo-qiang.Lung cancer radionuclide imaging targeting at vascular endothelial growth factor and its receptor[J].International Journal of Radiation Medicine and Nuclear Medicine,2008,32(2):82.
[3]闫瑾,林祥通.PET预测及评价肿瘤疗效的新进展[J].国际放射医学核医学杂志,2006,30(4):214.
 YAN Jin,LIN Xiang-tong.The new advance of prediction and evaluation of tumor therapeutic effects by PET[J].International Journal of Radiation Medicine and Nuclear Medicine,2006,30(2):214.
[4]章文成,杨占山.VEGF的放射生物学特性及其应用[J].国际放射医学核医学杂志,2005,29(1):33.
 ZHANG Wen-cheng,YANG Zhan-shan.The radiation-biological characteristics and application of vascular endothelial growth factor[J].International Journal of Radiation Medicine and Nuclear Medicine,2005,29(2):33.
[5]刘英,陈龙华,巩湘浩,等.VEGF与肿瘤的放射治疗[J].国际放射医学核医学杂志,2003,27(4):183.
 LIU Ying,CHEN Long-hua,GONG Xiang-hao,et al.VEGF and radiation sensibitity[J].International Journal of Radiation Medicine and Nuclear Medicine,2003,27(2):183.
[6]刘晓梅,魏玲格,张芳.以血管生成为分子靶点的放射性核素显像分子探针在肿瘤个体化用药中的应用[J].国际放射医学核医学杂志,2017,41(5):363.[doi:10.3760/cma.j.issn.1673-4114.2017.05.011]
 Liu Xiaomei,Wei Lingge,Zhang Fang.Targeting angiogenesis of radionuclide imaging molecular probes for tumor individualized medicine[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(2):363.[doi:10.3760/cma.j.issn.1673-4114.2017.05.011]

备注/Memo

备注/Memo:
收稿日期:2014-10-27。
通讯作者:刘晓梅,Email:ky121@163.com
更新日期/Last Update: 1900-01-01