[1]石朔,李彪.促血管生成因子在治疗缺血性心脏病中的应用[J].国际放射医学核医学杂志,2013,37(6):355-358.[doi:10.3760/cma.j.issn.1673-4114.2013.06.008]
 SHI Shuo,LI Biao.Utility of the angiogenesis factors in the management of ischemic heart disease[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(6):355-358.[doi:10.3760/cma.j.issn.1673-4114.2013.06.008]
点击复制

促血管生成因子在治疗缺血性心脏病中的应用(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
37
期数:
2013年第6期
页码:
355-358
栏目:
综述
出版日期:
2013-11-25

文章信息/Info

Title:
Utility of the angiogenesis factors in the management of ischemic heart disease
作者:
石朔 李彪
上海交通大学医学院附属瑞金医院核医学科, 上海 200025
Author(s):
SHI Shuo LI Biao
Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
关键词:
心肌缺血血管生成诱导剂基因疗法
Keywords:
Myocardial ischemiaAngiogenesis inducing agentsGene therapy
DOI:
10.3760/cma.j.issn.1673-4114.2013.06.008
摘要:
缺血性心脏病严重危害着人类的健康,目前使用的常规治疗方法仍无法修复坏死的心肌,达到满意的治疗效果.基因治疗尤其是促血管生成因子的治疗为此类疾病的治愈带来了希望.该文就促血管生成因子基因治疗缺血性心脏病的研究进展进行综述.
Abstract:
Ischemic heart disease seriously damages people’s health.Current therapies present a major challenge in the treatment of myocardium infarction,and can’t achieve satisfactory therapeutic effect.Gene therapy especially the angiogenesis factors offered new hopes to treat the disease.In addition,this paper summarizes the research advance in the therapeutic effect of the angiogenesis factors on ischemic heart disease.

参考文献/References:

[1] 张海澄,郭继鸿.冠心病流行病学与一级预防.中国实用内科杂志,2002, 22(8):449-451.
[2] 吴锡桂.我国人群冠心病流行现况与趋势.中国慢性病预防与控制,2003, 11(4):190-191.
[3] 刘小清.冠心病流行病学研究进展及疾病负担.中华心血管病杂志,2008, 36(6):573-576.
[4] Taimeh Z, Loughran J, Birks EJ, et al. Vascular endothelial growth factor in heart failure. Nat Rev Cardiol, 2013, 10(9):519-530.
[5] Woolard J, Bevan HS, Harper SJ, et al. Molecular diversity of VEGF-A as a regulator of its biological activity. Microcirculation, 2009,16(7):572-592.
[6] Zhao T, Zhao W, Chen Y, et al. Vascular endothelial growth factor (VEGF)-A:role on cardiac angiogenesis following myocardial infarction. Microvasc Res, 2010, 80(2):188-194.
[7] Nam JO, Son HN, Jun E, et al. FAS1 domain protein inhibits VEGF165-induced angiogenesis by targeting the interaction between VEGFR-2 and αvβ3 integrin. Mol Cancer Res, 2012, 10(8):1010-1020.
[8] Ruixing Y, Jiaquan L, Jie C, et al. Intravenous administration of vascular endothelial growth factor improves cardiac performance and inhibits cardiomyocyte apoptosis. Growth Factors, 2006, 24(3):209-217.
[9] Hao X, M?nsson-Broberg A, Grinnemo KH, et al. Myocardial angiogenesis after plasmid or adenoviral VEGF-A165 gene transfer in rat myocardial infarction model. Cardiovasc Res, 2007, 73(3):481487.
[10] Yan D, Wang X, Li D, et al. Macrophages overexpressing VEGF target to infarcted myocardium and improve neovascularization and cardiac function. Int J Cardiol, 2013, 164(3):334-338.
[11] Morishita R, Aoki M, Yo Y, et al. Hepatocyte growth factor as cardiovascular hormone:role of HGF in the pathogenesis of cardiovascular disease. Endocr J, 2002,49(3):273-284.
[12] Salimath AS, Phelps EA, Boopathy AV, et al. Dual delivery of hepatocyte and vascular endothelial growth factors via a protease-degradable hydrogel improves cardiac function in rats[J/OL]. PLoS One, 2012, 7(11):e50980[2012-12-24]. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjoumal.pone.0050980.
[13] Paradiso B, Zucchini S, Simonato M. Implication of fibroblast growth factors in epileptogenesis-associated circuit rearrangements[J/OL]. Front Cell Neurosci, 2013, 7:1-9[2012-12-24]. http://www.readcube.com/articles/10.3389/fncel.2013.00152.
[14] Gao MH, Lai NC, McKiman MD, et al. Increased regional function and perfusion after intracoronary delivery of adenovirus encoding fibroblast growth factor 4:report of preclinical data. Hum Gene Ther, 2004,15(6):574-587.
[15] Suzuki G, Lee TC, Fallavollita JA, et al. Adenoviral gene transfer of FGF-5 to hibernating myocardium improves function and stimulates myocytes to hypertrophy and reenter the cell cycle. Circ Res, 2005, 96(7):767-775.
[16] McCarter SD, Mei SH, Lai PF, et al. Cell-based angiopoietin-1 gene therapy for acute lung injury. Am J Respir Crit Care Med, 2007, 175(10):1014-1026.
[17] Mei SH, McCarter SD, Deng Y, et al. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin l[J/OL]. PLoS Med, 2007, 4(9):e269[2012-12-24]. http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjoumal.pmed.0040269.
[18] 朱成楚,陈仕林,刘玉清,等.rAAV2VEGF165与rAAV2AN-1联合转染促猪缺血心肌血管生成的研究.浙江大学学报:医学版,2010, 39(6):610-617.
[19] 黄盛东,刘晓红,白辰光,等.重组腺病毒介导的血管生成素改善缺血性心脏病的实验研究.中华老年心脑血管病杂志,2007, 9(3):192-195.
[20] 王潇,陈茜,周青,等.SonoVue微泡介导转染Ang-1基因治疗急性心肌梗死.中国医学影像技术,2009,25(11):1969-1971.
[21] Tuo QH, Xiong GZ, Zeng H, et al. Angiopoietin-1 protects myocardial endothelial cell function blunted by angiopoietin-2 and high glucose condition. Acta pharmacol Sin, 2011, 32(1):45-51.
[22] Tao Z, Chen B, Tan X, et al. Coexpression of VEGF and angiopoietin-1 promotes angiogenesis and cardiomyocyte proliferation reduces apoptosis in porcine myocardial infarction (MI) heart. Proo Nall Acad Sci U S A, 2011,108(5):2064-2069.
[23] Yuan G, Peng YJ, Reddy VD, et eil. Mutual antagonism between hypoxia-inducible factors la and 2a regulates oxygen sensing and cardio-respiratory homeostasis. Proc Natl Acad Sci USA. 2013, 110(19):E1788-1796.
[24] D’Angelo G, Duplan E, Boyer N, et al. Hypoxia up-regulates prolyl hydroxylase activity:a feedback mechanism that limits HIF-1 responses during reoxygenation. J Biol Chem, 2003, 278(40):38183-38187.
[25] Wang GL, Jiang BH, Rue EA, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995, 92(12):5510-5514.
[26] Manalo DJ, Rowan A, Lavoie T, et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood, 2005,105(2):659-669.
[27] Semenza GL Hypoxia-inducible factor 1(HIF-1) pathway[J/OL]. Sci STKE, 2007,2007(407):cm8[2012-12-24]. http://stke.sciencemag.org/cgi/content/abstract/2007/407/cm8.
[28] Brahimi-Hom C, Pouysségur J. The role of the hypoxia-inducible factor in tumor metabolism growth and invasion. Bull Cancer, 2006, 93(8):E73-80.
[29] Hinkel R, Lebherz C, Fydanaki M, et al. Angiogenetic potential of Ad2/Hif-lα/VP16 after regional application in a preclinical pig model of chronic ischemia. Curr Vase Pharmacol. 2013, 11(1):29-37.
[30] 牛铁生.缺氧诱导因子1对大鼠心肌梗死及再灌注损伤的保护作用研究.沈阳:中国医科大学,2007.
[31] Huang Y, Hickey RP, Yeh JL, et al. Cardiac myocyte-specific HIF-α deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB J. 2004, 18(10):1138-1140.
[32] Vale PR, Losordo DW, Milliken CE, et al. Randomized, singleblind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromecheinical mapping in patients with chronic myocardial ischemia. Circulation, 2001, 103(17):2138-2143.
[33] Shyu KG, Wang MT, Wang BW, et al. Intramyocardial injection of naked DNA encoding HIF-lα/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc Res, 2002, 54(3):576-583.
[34] Dong F, Khalil M, Kiedrowski M, et al. Critical role for leukocyte hypoxia inducible factor-lot expression in post-myocardial infarction left ventricular remodeling. Circ Res, 2010, 106(3):601-610.

相似文献/References:

[1]樊孝廉,舒毅,曾春平,等.99Tcm-MIBI门控心肌灌注显像在2型糖尿病无症状心肌缺血患者中的价值[J].国际放射医学核医学杂志,2016,40(3):171.[doi:10.3760/cma.j.issn.1673-4114.2016.03.002]
 Fan Xiaolian,Shu Yi,Zeng Chunping,et al.Significance of 99Tcm-MIBI gated myocardial perfusion imaging in patients with type 2 diabetes but without myocardial ischemia symptoms[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):171.[doi:10.3760/cma.j.issn.1673-4114.2016.03.002]
[2]蔡琳婷,陈文新.心肌细胞葡萄糖转运蛋白4的转运调控及与心肌活力关系的研究进展[J].国际放射医学核医学杂志,2013,37(1):47.[doi:10.3760/cma.j.issn.1673-4114.2013.01.013]
 CAI Lin-ting,CHEN Wen-xin.Recent advances on the regulation of glucose transporter 4 transport and its relationship with myocardial viability in cardiomyocytes[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(6):47.[doi:10.3760/cma.j.issn.1673-4114.2013.01.013]
[3]苏云龙,王雪梅.123I-β-甲基-p-碘苯基十五烷酸心肌显像研究进展[J].国际放射医学核医学杂志,2012,36(1):16.[doi:10.3760/cma.j.issn.1673-4114.2012.01.004]
 SU Yun-long,WANG Xue-mei.Advances in β-methyl-p-iodophenyl pentadecanoic acid myocardial imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(6):16.[doi:10.3760/cma.j.issn.1673-4114.2012.01.004]
[4]韩萍萍,颜珏.SPECT心肌灌注显像在糖尿病无症状性心肌缺血中的临床价值[J].国际放射医学核医学杂志,2013,37(6):385.[doi:10.3760/cma.j.issn.1673-4114.2013.06.015]
 HAN Ping-ping,YAN Jue.Clinical value of SPECT myocardial perfusion imaging for diabetic patients with silent myocardial ischemia[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(6):385.[doi:10.3760/cma.j.issn.1673-4114.2013.06.015]
[5]张国鹏,张永学.心肌缺血性疾病基因治疗及分子影像监测进展[J].国际放射医学核医学杂志,2008,32(5):257.
 ZHANG Guo-peng,ZHANG Yong-xue.Advances in gene therapy of myocardial ischemia and the monitoring with molecular imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2008,32(6):257.
[6]武志芳.SPECT心肌灌注显像对糖尿病心肌缺血损伤的研究[J].国际放射医学核医学杂志,2004,28(3):105.
 WU Zhi-fang.The study of SPECT myocardial perfusion imaging in detecting myocardial ischemia of diabetic patient[J].International Journal of Radiation Medicine and Nuclear Medicine,2004,28(6):105.
[7]吕宇航,孙凯.双源CT双能量心肌血池成像的应用及研究进展[J].国际放射医学核医学杂志,2018,(2):173.[doi:10.3760/cma.j.issn.1673-4114.2018.02.013]
 Lyu Yuhang,Sun Kai.Application and research progress of dual-energy myocardial blood pool imaging by dual-source computed tomography[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(6):173.[doi:10.3760/cma.j.issn.1673-4114.2018.02.013]

备注/Memo

备注/Memo:
收稿日期:2012-12-24。
基金项目:国家自然科学基金(81271610);上海市科技人才计划项目(11XD1403700)
通讯作者:李彪,Email:lbl0363@rjh.com.cn
更新日期/Last Update: 1900-01-01