[1]邱春,赵军,管一晖.睡眠疾病的功能影像学研究进展[J].国际放射医学核医学杂志,2013,37(5):314-321.[doi:10.3760/cma.j.issn.1673-4114.2013.05.015]
 QIU Chun,ZHAO Jun,GUAN Yi-hui.Functional neuroimaging of sleep disorders[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(5):314-321.[doi:10.3760/cma.j.issn.1673-4114.2013.05.015]
点击复制

睡眠疾病的功能影像学研究进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
37
期数:
2013年第5期
页码:
314-321
栏目:
综述
出版日期:
2013-09-25

文章信息/Info

Title:
Functional neuroimaging of sleep disorders
作者:
邱春 赵军 管一晖
200235 上海, 复旦大学附属华山医院PET中心
Author(s):
QIU Chun ZHAO Jun GUAN Yi-hui
PET Center, Huashan Hospital, Fudan University, Shanghai 200235, China
关键词:
入睡和失眠障碍发作性睡病睡眠呼吸暂停综合征不宁腿综合征快动眼睡眠期行为障碍正电子发射断层显像术
Keywords:
Sleep initiation and maintenance disordersNarcolepsySleep apnea syndromeRestless legs syndromeREM sleep behavior disordersPositron emission-tomography
DOI:
10.3760/cma.j.issn.1673-4114.2013.05.015
摘要:
睡眠疾病严重影响着人类的日常生活和健康,然而其发病机制及病理改变尚不清楚。功能影像学为睡眠疾病的研究提供了较好的平台,该文主要就几种常见的睡眠障碍疾病的功能影像学研究进展进行综述,同时简要介绍各种疾病的临床表现、脑部结构异常及主要病理改变。
Abstract:
Sleep disorders may affect the health and normal life of human badly.However, the pathophysiology underlying adult sleep disorders is still unclear.Functional neuroimaging can be used to investigate whether sleep disorders are associated with specific changes in brain structure or regional activity.This paper reviews functional brain imaging findings in major intrinsic sleep disorders (i.e., idiopathic insomnia, narcolepsy, and obstructive sleep apnea) and in abnormal motor behavior during sleep (i.e., periodic limb movement disorder and REM sleep behavior disorder).Metabolic/functional investigations (positron emission tomography, single photon emission computed tomography, functional magnetic resonance imaging) are mainly reviewed, as well as neuroanatomical assessments (voxel-based morphometry, magnetic resonance spectroscopy).Meanwhile, here are some brief introduction of different kinds of sleep disorders.

参考文献/References:

[1] American Sleep Disorders Association. The international classifica-tion of sleep disorders, revised:diagnostic and coding manual.Rochester(MN):American Sleep Disorders Association, 2000.
[2] Hilker R, Burghaus L, Razai N, et al. Functional brain imaging in combined motor and sleep disorders. J Neurol Sci, 2006, 248(1-2):223-226.
[3] Dang-Vu TT, Schabus M, Desseilles M, et al. Functional neu-roimaging insights into the physiology of human sleep. Sleep,2010,33(12):1589-1603.
[4] Maquet P, Dive D, Salmon E, et al. Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and[18F] 2-fluoro-2-deoxy-D-glucose method. Brain Res,1990, 513(1):136-143.
[5] 黄志力.睡眠与睡眠障碍//孙凤艳.神经生物学.上海:上海科学技术出版社,2008:328-331.
[6] Desseilles M, Dang-Vu T, Schabus M,et al. Neuroimaging insights into the pathophysiology of sleep disorders. Sleep,2008, 31(6):777-794.
[7] Perlis ML, Merica H, Smith MT, et al. Beta EEG activity and insomnia. Sleep Med Rev,2001, 5(5):365-376.
[8] Nofzinger EA, Buysse DJ, Germain A, et al. Functional neuroimag-ing evidence for hyperarousal in insomnia. Am J Psychiatry, 2004,161(11):2126-2128.
[9] Smith MT, Perlis ML, Chengazi VU, et al. Neuroimaging of NREM sleep in primary insomnia:a Tc-99-HMPAO single photon emission computed tomography study. Sleep, 2002, 25(3):325-335.
[10] Smith MT, Perlis ML, Chengazi VU, et al. NREM sleep cerebral blood flow before and after behavior therapy for chronic primary insomnia:preliminary single photon emission computed tomography (SPECT) data. Sleep Med,2005,6(1):93-94.
[11] Baumann CR, Bassetti CL. Hypocretins(orexins):clinical impact of the discovery of a neurotransmitter. Sleep Med Rev, 2005,9(4):253-268.
[12] Overeem S, Steens SC, Good CD, et al. Voxel-based morphometry in hypocretin-deficient narcolepsy. Sleep,2003, 26(1):44-46.
[13] Brenneis C, Brandauer E, Frauscher B, et al. Voxel-based mor-phometry in narcolepsy. Sleep Med, 2005,6(6):531-536.
[14] Kaufmann C,Schuld A, Pollmacher T. Reduced cortical gray matter in narcolepsy:preliminary findings with voxel-based morphome-try. Neurology, 2002, 58(12):1852-1855.
[15] Draganski B, Geisler P, Hajak G, et al. Hypothalamic gray matter changes in narcoleptic patients. Nat Med, 2002,8(4):1186-1188.
[16] Buskova J, Vaneckova M, Sonka K, et al. Reduced hypothalamic gray matter in narcolepsy with cataplexy. Neuro Endocrinol Lett,2006, 27(6):769-772.
[17] Lodi R, Tonon C, Vignatelli L, et al. In vivo evidence of neuronalloss in the hypothalamus of narcoleptic patients. Neurology,2004, 63(8):1513-1515.
[18] Ellis CM,Simmons A,Lemmens G,et al. Proton spectroscopy in the narcoleptic syndrome. Is there evidence of a brainstem lesion?. Neurology, 1998,50(2 Suppl 1):S23-26.
[19] Joo EY, Tae WS, Kim JH, et al. Glucose hypometabolism of hypothalamus and thalamus in narcolepsy. Ann Neurol, 2004, 56(3):437-440.
[20] Joo EY, Hong SB, Tae WS, et al. Cerebral perfusion abnormality in narcolepsy with cataplexy. Neuroimage, 2005, 28(2):410-416.
[21] Meyer JS, Sakai F, Karacan I, et al. Sleep apnea, narcolepsy, and dreaming:regional cerebral hemodynamics. Ann Neurol, 1980, 7(5):479-485.
[22] Asenbaum S, Zeithofer J, Saletu B, et al. Technetium-99m-HMPAO SPECT imaging of cerebral blood flow during REM sleep in nar-coleptics. J Nucl Med, 1995, 36(7):1150-1155.
[23] Schwartz S, Ponz A, Poryazova R, et al. Abnormal activity in hypothalamus and amygdala during humour processing in human narcolepsy with cataplexy. Brain, 2008, 131(Pt 2):514-522.
[24] Hong SB, Tae WS, Joo EY. Cerebral perfusion changes during cata-plexy in narcolepsy patients. Neurology, 2006, 66(11):1747-1749.
[25] Chabas D, Habert MO, Maksud P, et al. Functional imaging of cat-aplexy during status cataplecticus. Sleep, 2007,30(2):153-156.
[26] Sudo Y, Suhara T, Honda Y, et al. Muscarinic cholinergic receptors in human narcolepsy:a PET study. Neurology, 1998, 51(5):1297-1302.
[27] Derry C, Benjamin C, Bladin P, et al. Increased serotonin receptor availability in human sleep:evidence from an[18F] MPPF PET study in narcolepsy. Neuroimage, 2006, 30(2):341-348.
[28] Eisensehr I, Linke R, Tatsch K, et al. Alteration of the striatal dopaminergic system in human narcolepsy. Neurology, 2003, 60(11):1817-1819.
[29] Staedt J, Stoppe G, Kogler A, et al.[123I]IBZM SPET analysis of dopamine D2 receptor occupancy in narcoleptic patients in the course of treatment. Biol Psychiatry, 1996, 39(2):107-111.
[30] Rinne JO, Hublin C, Nagren K, et al. Unchanged striatal dopamine transporter availability in narcolepsy:a PET study with[11C]-CFT.Acta Neurol Scand,2004, 109(1):52-55.
[31] Arens R, Marcus CL. Pathophysiology of upper airway obstruction:a developmental perspective. Sleep, 2004, 27(5):997-1019.
[32] Mateika JH, Ellythy M. Chemoreflex control of ventilation is altered during wakefulness in humans with OSA. Respir Physiol Neurobiol,2003, 138(1):45-57.
[33] Macey PM, Henderson LA, Macey KE, et al. Brain morphology associated with obstructive sleep apnea. Am J Respir Crit Care Med,2002, 166(10):1382-1387.
[34] Morrell MJ, McRobbie DW, Quest RA, et al. Changes in brain mor-phology associated with obstructive sleep apnea. Sleep Med, 2003,4(5):451-454.
[35] (VDonoghue FJ, Briellmann RS, Rochford PD, et al. Cerebral struc-tural changes in severe obstructive sleep apnea. Am J Respir Crit Care Med, 2005, 171(10):1185-1190.
[36] Kamba M, Suto Y, Ohta Y, et al. Cerebral metabolism in sleep apnea. Evaluation by magnetic resonance spectroscopy. Am J Respir Crit Care Med, 1997,156(1):296-298.
[37] Alchanatis M,Deligiorgis N, Zias N, et al. Frontal brain lobe impairment in obstructive sleep apnoea:a proton MR spectroscopy study. Eur Respir J, 2004, 24(6):980-986.
[38] Bartlett DJ, Rae C, Thompson CH, et al. Hippocampal area metabo-lites relate to severity and cognitive function in obstructive sleep apnea. Sleep Med, 2004, 5(6):593-596.
[39] Thomas RJ, Rosen BR, Stern CE, et al. Functional imaging of working memory in obstructive sleep-disordered breathing. J ApplPhysiol, 2005,98(6):2234-2236.
[40] Ayalon L, Ancoli-Israel S, Klemfuss Z, et al. Increased brain acti-vation during verbal learning in obstructive sleep apnea. Neuroim-age, 2006,31(4):1817-1825.
[41] Antczak J, Popp R, Hajak G, et al. Positron emission tomography findings in obstructive sleep apnea patients with residual sleepiness treated with continuous positive airway pressure. J Physiol Pharma-col, 2007, 58 Suppl 5(Pt 1):S25-35.
[42] Etgen T, Draganski B, Ilg C, et al. Bilateral thalamic gray matter changes in patients with restless legs syndrome. Neuroimage, 2005,24(4):1242-1247.
[43] Rizzo G, Manners D, Vetrugno R, et al. Combined brain voxel-based morphometry and diffusion tensor imaging study in idiopathic Restless Legs Syndrome patients. Eur J Neurol, 2012,19(7):1045-1049.
[44] Margariti PN, Astrakas LG, Tsouli SG, et al. Investigation of unmedicated early onset restless legs syndrome by voxel-basedmorphometry, T2 relaxometry, and functional MR imaging during the night-time hours. AJNR Am J Neuroradiol, 2012, 33(4):667-672.
[45] Comley RA, Cervenka S, Palhagen SE, et al. A comparison of gray matter density in restless legs syndrome patients and matched con-trols using voxel-based morphometry. J Neuroimaging, 2012,22(1):28-32.
[46] Bucher SF, Seelos KC, Oertel WH, et al. Cerebral generators involved in the pathogenesis of the restiess legs syndrome. Ann Neurol, 1997,41(5):639-645.
[47] Eisensehr I, Wetter TC, Linke R, et al. Normal IPT and IBZM SPECT in drug-naive and levodopa-treated idiopathic restless legs syndrome. Neurology, 2001, 57(7):1307-1309.
[48] Tribl GG, Asenbaum S, Happe S,et al. Normal striatal D2 receptor binding in idiopathic restless legs syndrome with periodic leg move-ments in sleep. Nucl Med Commun, 2004,25(1):55-60.
[49] Cervenka S, Palhagen SE, Comley RA, et al. Support for dopamin-ergic hypoactivity in restless legs syndrome:a PET study on 02-receptor binding. Brain, 2006,129(Pt 8):2017-2028.
[50] 钟泽其,张宗平,唐向东.快动眼睡眠行为障碍与神经退变性疾病的研究进展.中国神经精神疾病杂志,2011,37(4):254-256.
[51] Unger MM, Belke M, Menzler K, et al. Diffusion tensor imaging in idiopathic REM sleep behavior disorder reveals microstructural changes in the brainstem, substantia nigra, olfactory region, and other brain regions. Sleep, 2010, 33(6):767-773
[52] Scherfler C, Frauscher B, Schocke M, et al. White and gray matter abnormalities in idiopathic rapid eye movement sleep behavior dis-order:a diffusion-tensor imaging and voxel-based morphometric study. Ann Neurol, 2011, 69(2):400-407
[53] Hanyu H, Inoue Y, Sakurai H, et al. Voxel-based magnetic reso-nance imaging study of structural brain changes in patients with idiopathic REM sleep behavior disorder. Parkinsonism Relat Dis-ord, 2012, 18(2):136-139
[54] Ellmore TM, Hood AJ, Castriotta RJ, et al. Reduced volume of the putamen in REM sleep behavior disorder patients. Parkinsonism Relat Disord, 2010, 16(10):645-649
[55] Miyamoto M, Miyamoto T, Kubo J,et al. Brainstem function in rapid eye movement sleep behavior disorder:the evaluation of brainstem function by proton MR spectroscopy (1H-MRS). Psychi-atry Clin Neurosci, 2000,54(3):350-351
[56] Iranzo A, Santamaria J, Pujol J, et al. Brainstem proton magnetic resonance spectroscopy in idopathic REM sleep behavior disorder.Sleep, 2002, 25(8):867-870
[57] Shirakawa S, Takeuchi N, Uchimura N, et al. Study of image find-ings in rapid eye movement sleep behavioural disorder. Psychiatry Clin Neurosci, 2002, 56(3):291-292
[58] Mazza S, Soucy JP, Gravel P, et al. Assessing whole brain perfusion changes in patients with REM sleep behavior disorder. Neurology,2006,67(9):1618-1622
[59] Hanyu H, Inoue Y, Sakurai H, et al. Regional cerebral blood flow changes in patients with idiopathic REM sleep behavior disorder. Eur J Neurol, 2011, 18(5):784-788
[60] Eisensehr I, Linke R, Noachtar S, et al. Reduced striatal dopamine transporter in idiopathic rapid eye movement sleep behavior disor-der. Brain, 2000, 123(Pt 6):1155-1160
[61] Albin RL, Koeppe RA, Chervin RD, et al. Decreased striatal dopaminergic innervation in REM sleep behavior disorder. Neurol-ogy, 2000, 55(9):1410-1412
[62] Eisensehr I, Linke R, Tatsch K, et al. Increased muscle activity during rapid eye movement sleep correlates with decrease of striatal presynaptic dopamine transporters. IPT and IBZM SPECT imaging in subclinical and clinically manifest idiopathic REM sleep behav-ior disorder, Parkinson’s disease, and controls. Sleep, 2003, 26(5):507-512
[63] Kim YK, Yoon IY, Kim JM, et al. The implication of nigrostriatal dopaminergic degeneration in the pathogenesis of REM sleep behavior disorder. Eur J Neurol, 2010, 17(3):487-492
[64] Stiasny-Kolster K, Doerr Y, MOiler JC, et al. Combination of ‘idio pathic’ REM sleep behaviour disorder and olfactory dysfunction as possible indicator for alpha-synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT. Brain, 2005, 128(Pt 1):126-137
[65] Iranzo A, Valldeoriola F, Lomefia F, et al. Serial dopamine trans-porter imaging of nigrostriatal function in patients with idiopathic rapid-eye-movement sleep behaviour disorder:a prospective study. Lancet Neurol, 2011, 10(9):797-805
[66] Caselli RJ, Chen K, Bandy D, et al. A preliminary fluorodeoxy-glu-eose positron emission tomography study in healthy adults reporting dream-enactment behavior. Sleep, 2006, 29(5):927-933
[67] Fujishiro H, Iseki E, Murayama N, et al. Diffuse occipital hypometabolism on[18F]-FDG PET scans in patients with idiopathic REM sleep behavior disorder:prodromal dementia with Lewy bodies?. Psychogeriatries, 2010, 10(3):144-152.

备注/Memo

备注/Memo:
收稿日期:2012-10-08。
通讯作者:管一晖,Email:guanyihui@hotmail.com
更新日期/Last Update: 1900-01-01