[1]柳卫.动物PET研究进展[J].国际放射医学核医学杂志,2002,26(2):49-52.
 LIU Wei.Progress on dedicated animal PET[J].International Journal of Radiation Medicine and Nuclear Medicine,2002,26(2):49-52.
点击复制

动物PET研究进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
26
期数:
2002年第2期
页码:
49-52
栏目:
综述
出版日期:
1900-01-01

文章信息/Info

Title:
Progress on dedicated animal PET
作者:
柳卫
214063 江苏无锡, 核医学国家重点实验室
Author(s):
LIU Wei
State Key Laboratory of Nuclear Medicine, Jiangsu Wuxi 214063, China
关键词:
正电子发射体层显像动物分子显像
Keywords:
positron emission tomographyanimalmolecular imaging
分类号:
R817.4
摘要:
分子医学研究需要在活体实验动物上观察分子水平的生物学过程,因而正电子发射体层(PET)显像作为目前最成熟的分子显像方法,正被越来越多地用于动物实验。新开发的实验动物专用PET扫描仪的各项性能也逐步趋于完善。该技术将在疾病研究、新药开发、基因治疗等领域发挥重要作用。
Abstract:
Positron emission tomography, as the leading technology providing molecular imaging of biological processes’ is widely used on living laboratory animals. High-resolution dedicated animal PET scanners have been developed. Al though the dedicated animal PET faces obstacles and challenges, this advanced technology would play an important role in molecular biomedicine researches, such as diseases study, medicine development, and gene therapy.

参考文献/References:

[1] Chidley E. Molecular Imaging:radiology’s next front[J].Radiol Today,2001,2:11-13.
[2] Phelps ME. Positron emission tomography provides molecular imaging of biological processes[J].Proc Natl Acad Sci USA,2000,97:9226-9233.
[3] Gambhir SS,Herschman HR,Cherry FR,et al. Imaging transgene expression with radionuclide imaging technologies[J].Neoplasia,2000,2:118-136.
[4] Jaszaak RJ,Li J,Wang H,et al. Pinhole Collimator for ultra-high resolution,small field of view SPECT[J].Phy Med Biol,1994,39:425-437.
[5] Ishizu K,Mukai T,Yonekura Y,et al. Ultra-high resolution SPECT system using four pinhole collimator for small animal studies[J].J Nucl Med,1995,36:2282-2287.
[6] Kastiss GK,Barber HB,Barett HH,et al. High resolution SPECT imager for three-dimentional imaging of small animals[J].J Nucl Med,1998,39:9p.
[7] Green LA,Gambhir S,Srinivasan A,et al. Noninvasive methods for quantitating blood time-activity curves from mouse PET images obtained with fluorine-18-fluorodeoxyglucose[J].J Nucl Med,1998,39:729-734.
[8] Hichwa R. Are animal scanners relly necessary for PET?[J].J Nucl Med,1994,35:1396-1397.
[9] Bloomfield PM,Rajeswaran S,Spinks TJ,et al. The design and physical characteristics of a small animal positron emission tomograph[J].Phy Med Biol,1995,40:1105-1126.
[10] Marriott CJ,Cadorette JE,Lecomte R,et al. High-resolution PET imaging and quantitation of pharmaceutical biodistributions in a small animal using avalanche photodiode detectors[J].J Nucl Med,1994,35:1390-1396.
[11] Weber S,Terstegge A,Herzog H,et al. The design of an animal PET:flexible geometry for achieving optimal spatial resolution or high sensitivity[J].IEEE Trans Med Imaging,1997,16:684-689.
[12] Cherry SR,Shao Y,Silverman RW,et al. MicroPET:A high resolution PET scanner for imaging small animals[J].IEEE Trans Nucl Sci,1997,44:1161-1166.
[13] Ziegler SI,Pichler BJ,Boening G,et al. A prototype highresolution animal positron tomograph with avalanche photodiode arrays and LSO crystals[J].Eur J Nucl Med,2001,28:136-143.
[14] Jeavons AP,Chandler RA,Dettmar CA,et al. A fully 3D HIDAC-PET camera with sub-millimetre resolution for imaging small animals[J].IEEE Trans Nucl Sci,1999,46:468-473.
[15] Cherry SR,Gambhir SS. Use of positron emission tomography in animal research[J].ILAR J,2001,42:219-232.
[16] Chatziioannou A,Tai YC. Detector development for micro PET Ⅱ:a 1 microl resolution PET scanner for small animal imaging[J].Phy Med Biol,2001,46:2899-2910.
[17] Moore AH,Hovda DA,Cherry SR,et al. Dynamic changes in cerebral glucose metabolism in conscious infant monkeys during the first year of life as measured by positron emission tomography[J].Dev Brain Res,2000,120:141-150.
[18] Moore AH,Osteen CL,Chatziioannou AF, et al. Quantitative assessment of longitudinal metabolic changes in vivo following traumatic brain injury in the adult rat using FDG-microPET[J].J Cereb Blood Flow Metab,2000,20:1492-1501.
[19] Kornblum HI,Araujo DM,Annala AJ,et al. In vivo imaging of neuronal activation and plasticity in the rat brain with microPET,a novel high-resolution positron emission tomography[J].Nat Biotechnology,2000,18:655-660.
[20] Kudo T,Annala AJ,Cherry SR, et al. Noninvasive measurement of F-18 deoxyglucose concentrations in rat myocardium with UCLA microPET[J].J Nucl Med,1999,40:183P.
[21] Lapointe D,Bentourkia M,Cadorette J, et al. High-resolution cardiac PET in rats[J].J Nucl Med,1999,40:185P.
[22] Kudo T,Annala AJ,Cherry SR, et al. Measurement of myocardial blood flow during occlusion/reperfusion in rats with dynamic microPET imaging[J].J Nucl Med,1999,40:6P.
[23] Lapointe D,Brasseur N,Cadorette J, et al. High-resolution PET imaging for in vivo monitoring of tumor response after photodynamic therapy in mice[J].J Nucl Med,1999,40:876-882.
[24] Tsukada H,Kreuter J,Maggos CE, et al. Effects of binge pattern cocaine administration on dopamine D1 and D2 receptors in the rat brain:An in vivo study using positron emission tomography[J].J of Neuroscience,1996,16:7670-7677.
[25] Melega WP,Raleigh MJ,Stout DB, et al. Recovery of striatal dopamine function after acute amphetamine-and methamphetamine-induced neurotoxicity in the vervet monkey[J].Brain Res,1997,766:113-120.
[26] Brownell AL,Livni E,Galpern W, et al. In vivo PET imaging in rat of dopamine terminals reveals functional neural transplants[J].Annals of Neurology,1998:,43:387-390.
[27] Melega WP,Lacan G,Desalles AA, et al. Long-term methamphetamine-induced decreases of[(11):C] WIN 35,428 binding in striatum are reduced by GDNF:PET studies in the vervet monkey[J].Synapse,2000,35:243-249.
[28] Urbain JLC. Reporter gene and imaging[J].J Nucl Med,2001,42:106-109.
[29] Wu AM,Yazaki PJ,Tsai S, et al. High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment[J].Proc Natl Acad Sci USA,2000,97:8495-8500.
[30] Myers R,Hume S,Bloomfield P, et al. Radio-imaging in small animals[J].J of Psychopharmacology,1999,13:352-357.
[31] Tsukada H,Harada N,Nishiyama S, et al. Dose-response and duration effects of acute administrations of cocaine and GBR12909 on dopamine synthesis and transporter in the conscious monkey brain:PET studies combined with microdialysis[J].Brain Res,2000,860:141-148.

相似文献/References:

[1]张丽娟,马蕊,王月英,等.免疫诱导IRM-2小鼠再生障碍性贫血模型的研究[J].国际放射医学核医学杂志,2016,40(2):125.[doi:10.3760/cma.j.issn.1673-4114.2016.02.008]
 Zhang Lijuan,Ma Rui,Wang Yueying,et al.Immune-induced aplastic anemia IRM-2 mice model research[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):125.[doi:10.3760/cma.j.issn.1673-4114.2016.02.008]
[2]张洪明,李险峰.放射性心脏损伤动物模型的研究进展[J].国际放射医学核医学杂志,2014,38(6):412.[doi:10.3760/cma.j.issn.1673-4114.2014.06.015]
 Zhang Hong-ming,Li Xian-feng.Progress in animal model of radiation-induced heart disease[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(2):412.[doi:10.3760/cma.j.issn.1673-4114.2014.06.015]
[3]黄少祥,樊体强.塞来昔布对非小细胞肺癌移植瘤的辐射增敏实验研究[J].国际放射医学核医学杂志,2013,37(3):150.[doi:10.3760/cma.j.issn.1673-4114.2013.03.006]
 HUANG Shao-xiang,FAN Ti-qiang.Radiosensitization on non-small cell lung cancer induced by celecoxib[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(2):150.[doi:10.3760/cma.j.issn.1673-4114.2013.03.006]
[4]刘晓秋,王芹,周则卫,等.9401对H22肝癌小鼠放射增敏效应的研究[J].国际放射医学核医学杂志,2013,37(1):13.[doi:10.3760/cma.j.issn.1673-4114.2013.01.004]
 LIU Xiao-qiu,WANG Qin,ZHOU Ze-wei,et al.Radiosensitizing effects of 9401 on mice bearing H22 hepatoma[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(2):13.[doi:10.3760/cma.j.issn.1673-4114.2013.01.004]
[5]王月英,吴红英,李德冠,等.小鼠不同肿瘤模型对放化疗敏感性的研究[J].国际放射医学核医学杂志,2012,36(5):289.[doi:10.3760/cnla.j.issn.1673-4114.2012.05.006]
 WANG Yue-ying,WU Hong-ying,LI De-guan,et al.The radiation sensitivities of different mice tumor model to radiotherapy and chemotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(2):289.[doi:10.3760/cnla.j.issn.1673-4114.2012.05.006]
[6]闫玉军,徐文清,刘晓秋,等.实验肿瘤局部照射动物模型的改进[J].国际放射医学核医学杂志,2013,37(6):337.[doi:10.3760/cma.j.issn.1673-4114.2013.06.003]
 YAN Yu-jun,XU Wen-qing,LIU Xiao-qiu,et al.Improvement on the animal model of local irradiation for experimental tumors[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(2):337.[doi:10.3760/cma.j.issn.1673-4114.2013.06.003]
[7]李亚军,白人驹,高硕,等.兔VX2肺肿瘤PET-CT与血管生成的相关性研究[J].国际放射医学核医学杂志,2010,34(3):139.
 LI Ya-jun,BAI Ren-ju,GAO Shuo,et al.The correlation between PET-CT imaging and microvessed density in rabbit lung VX2 tumor model[J].International Journal of Radiation Medicine and Nuclear Medicine,2010,34(2):139.
[8]亓龙,王辉.甲状腺癌骨转移模型的研究[J].国际放射医学核医学杂志,2010,34(6):329.[doi:10.3760/cma.j.issn.1673-4114,2010.06.003]
 QI Long,WANG Hui.Research progress of animal model of bone metastases of thyroid carcinoma[J].International Journal of Radiation Medicine and Nuclear Medicine,2010,34(2):329.[doi:10.3760/cma.j.issn.1673-4114,2010.06.003]
[9]潘懿范,宋少莉,黄钢.比较SPECT-CT和PET-CT在小动物模型中的应用[J].国际放射医学核医学杂志,2009,33(4):196.[doi:10.3760/cma.j.issn.1673-4114.2009.04.002]
 PAN Yi-fan,SONG Shao-li,HUANG Gang.Comparison SPECT-CT with PET-CT in several applications of small-animal models[J].International Journal of Radiation Medicine and Nuclear Medicine,2009,33(2):196.[doi:10.3760/cma.j.issn.1673-4114.2009.04.002]
[10]王津晗,徐畅,王彦,等.放射性肠损伤模型及其评价研究进展[J].国际放射医学核医学杂志,2017,41(1):33.[doi:10.3760/cma.j.issn.1673-4114.2017.01.007]
 Wang Jinhan,Xu Chang,Wang Yan,et al.Progress on the evaluating and establishing methods of radiation-induced intestinal injuries animal model[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(2):33.[doi:10.3760/cma.j.issn.1673-4114.2017.01.007]

备注/Memo

备注/Memo:
收稿日期:2002-2-5。
基金项目:江苏省科技厅"国际合作项目"资助(BZ2001055)
作者简介:柳卫(197l-),男,江苏南京人,南京医科大学第一附属医院讲师,复旦大学医学院研究生,主要从事甲状腺疾病研究。
更新日期/Last Update: 1900-01-01