[1]朱长春,冯国兴,董佳丽,等.应用生物信息学确定结直肠癌辐射抗性细胞的差异表达基因[J].国际放射医学核医学杂志,2018,(4):340-345,351.[doi:10.3760/cma.j.issn.1673-4114.2018.04.010]
 Zhu Changchun,Feng Guoxing,Dong Jiali,et al.Identification of genes for radiation resistance in colorectal cancer cells using bioinformatics analysis[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(4):340-345,351.[doi:10.3760/cma.j.issn.1673-4114.2018.04.010]
点击复制

应用生物信息学确定结直肠癌辐射抗性细胞的差异表达基因(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
期数:
2018年第4期
页码:
340-345,351
栏目:
基础研究
出版日期:
2018-07-25

文章信息/Info

Title:
Identification of genes for radiation resistance in colorectal cancer cells using bioinformatics analysis
作者:
朱长春 冯国兴 董佳丽 姜勉 贺俊博 樊赛军
300192 天津, 中国医学科学院北京协和医学院放射医学研究所, 天津市放射医学与分子核医学重点实验室
Author(s):
Zhu Changchun Feng Guoxing Dong Jiali Jiang Mian He Junbo Fan Saijun
Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
关键词:
结直肠肿瘤辐射抗性差异表达基因生物信息学
Keywords:
Colorectal neoplasmsRadiation resistanceDifferent expression genesBioinformatics
DOI:
10.3760/cma.j.issn.1673-4114.2018.04.010
摘要:
目的 基于生物信息学的方法,筛选结直肠癌辐射抗性细胞中的差异表达基因,从分子水平上初步探讨与结直肠癌抗辐射相关的潜在基因。方法 从基因芯片公共数据库(GEO)中下载耐辐射的结直肠癌细胞基因表达谱数据(GSE43206),并利用R语言中的limma包进行差异基因筛选。对差异基因中的编码基因分别进行基因本体论(GO)富集分析、京都基因和基因组百科全书(KEGG)通路分析以及蛋白相互作用(PPI)分析,进一步筛选出PPI网络中的关键基因。通过实时荧光定量PCR实验确定5 Gy γ射线照射后人结肠癌HCT116细胞中关键基因的mRNA相对表达水平。采用Student t-test检验进行统计学分析,P<0.05表示差异有统计学意义。结果 共筛选出101个差异基因,包含67个上调基因,34个下调基因。GO富集分析发现这些差异基因在细胞迁移、DNA复制等生物学过程中富集。KEGG通路分析证实这些差异基因主要富集在乏氧诱导因子1信号通路。通过构建PPI网络,筛选出NDRG1、PAG1、LRP1、PIM1、LDLRPLAUR共6个与结直肠癌抗辐射相关的潜在基因。实时荧光定量PCR实验结果显示,与照射前比较,照射后人结肠癌HCT116细胞中NDRG1、PAG1、LRP1、PIM1、LDLRNDRG1、PAG1、LRP1、PIM1、LDLR关键基因的mRNA表达量显著上升,差异均有统计学意义(t=49.981,P<0.01;t=26.420、28.698、21.358、23.545,均P<0.05;t=50.601,P<0.01)。结论 利用生物信息学能够快速地筛选出与结直肠癌抗辐射相关的潜在基因,且潜在基因在结直肠癌HCT116细胞中差异表达。
Abstract:
Objective To preliminarily explore potential genes related to radiation resistance in colorectal cancer at the molecular level, we employed bioinformatics to screen different expression genes for radiation resistance in colorectal cancer cells. Methods The comparison between the gene expression levels of radiation resistance colorectal cancer cell lines and parental cell lines was downloaded from the Gene Expression Omnibus(GEO) database. The differentially expressed genes(DEGs) were screened by using the R Programming Language and were analyzed through Gene Ontology(GO) functional enrichment analysis and kyoto encyclopedia of genes and genomes(KEGG) pathway analysis and by using protein-protein interaction(PPI) networks. The hub genes were obtained on the basis of a PPI network. The mRNA relative expression level of the hub genes was verified via quantitative real-time polymerase chain reaction in HCT116 after radiation. The statistical significance of the results was analyzed via student t-test. Results A total of 101 DEGs were found in GSE43206, including 67 upregulated genes and 34 downregulated genes. The GO enrichment analysis suggested that these DEGs are enriched in biological processes, including cell migration and DNA replication. KEGG pathway analysis indicated that these DEGs were mainly enriched in the hypoxia inducible factor-1 signaling pathway. Six radiation resistance genes with high connectivity were identified on the basis of the PPI networks, including NDRG1, PAG1, LRP1, PIM1, LDLR, and PLAUR. Quantitative real-time polymerase chain reation verified that the expression levels of hub genes were markedly up-regulated in HCT116 after radiation, including NDRG1、PAG1、LRP1、PIM1、LDLR and PLAUR (t=49.981, P<0.01; t=26.420, 28.698, 21.358, 23.545, all P<0.05; t=50.601, P<0.01). Conclusions The use of bioinformatics enabled effectively screening radiation resistance genes in colorectal cancer, which can be used for further researches. The molecular biology experiments confirmed the differential expression of potential genes after irradiation in colorectal cancer cell HCT116.

参考文献/References:

[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018, 68(1):7-30. DOI:10.3322/caac.21442.
[2] Cong XU, Cao K, Liu L, et al. Advances in sensitive biomarkers of radiotherapy in colorectal cancer patients[J]. J Transl Med, 2017, 4(9):84-87. DOI:10.3969/j.issn.2095-6894.2017.09.020.
[3] 储小飞, 赵舒怡, 樊赛军. 肿瘤干细胞与辐射抗性的研究进展[J].国际放射医学核医学杂志, 2015, 39(5):431-436. DOI:10.3760/cma.j.issn.1673-4114.2015.05.019. Chu XF, Zhao SY, Fan SJ. Advance progress of cancer stem cells and radioresistance[J]. Int J Radiat Med Nucl Med, 2015, 39(5):431-436.
[4] 杨丽君, 万晓晨. 结直肠癌中miR-106b增强肿瘤细胞放疗抵抗作用机制的初步分析[J]. 中国现代医生, 2018, 56(1):29-31, 35. Yang LY, Wan XC. Preliminary analysis on the mechanism of miR-106b enhancing the radioresistance of tumor cells in colorectal cancer[J]. Chin Mod Doctor, 2018, 56(1):29-31, 35.
[5] Clough E, Barrett T. The Gene Expression Omnibus Database[J]. Methods Mol Biol, 2016, 1418:93-110. DOI:10.1007/978-1-4939-3578-9_5.
[6] He X, Fan L, Wu Z, et al. Gene expression profiles reveal key pathways and genes associated with neuropathic pain in patients with spinal cord injury[J]. Mol Med Rep, 2017, 15(4):2120-2128. DOI:10.3892/mmr.2017.6231.
[7] Keerin P, Kurutach W, Boongoen T. Cluster-based KNN missing value imputation for DNA microarray data[J]. Int J Data Min Bioinform, 2012, 15(2):445-450. DOI:10.1109/ICSMC.2012. 6377764.
[8] Liew AW, Law NF, Yan H. Missing value imputation for gene expression data:computational techniques to recover missing data from available information[J]. Brief Bioinform, 2011,12(5):498-513. DOI:10.1093/bib/bbq080.
[9] Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J/OL]. Nucleic Acids Res, 2015, 43(7):e47[2018-05-02]. https://www.ncbi.nlm.nih.gov/pubmed/25605792. DOI:10.1093/nar/gkv007.
[10] Peri S, Navarro JD, Amanchy R, et al. Development of human protein reference database as an initial platform for approaching systems biology in humans[J]. Genome Res, 2003, 13(10):2363-2371. DOI:10.1101/gr.1680803.
[11] Smoot ME, Ono K, Ruscheinski J, et al. Cytoscape 2.8:new features for data integration and network visualization[J]. Bioinformatics, 2011, 27(3):431-432. DOI:10.1093/bioinformatics/btq675.
[12] Shannon P, Markiel A, Ozier O, et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11):2498-2504. DOI:10.1101/gr.1239303.
[13] Lin CY, Chin CH, Wu HH, et al. Hubba:hub objects analyzer-a framework of interactome hubs identification for network biology[J]. Nucleic Acids Res, 2008, 36(Web Server issue):W438-W443. DOI:10.1093/nar/gkn257.
[14] Cline MS, Smoot M, Cerami E, et al. Integration of biological networks and gene expression data using Cytoscape[J]. Nat Pro, 2007, 2(10):2366-2382. DOI:10.1038/nprot.2007.324.
[15] Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data[J]. Biostatistics, 2003, 4(2):249-264. DOI:10.1093/biostatistics/4.2.249.
[16] Jeong H, Mason SP, Barabási AL, et al. Lethality and centrality in protein networks[J]. Nature, 2001, 411(6833):41-42. DOI:10.1038/35075138.
[17] Goh KI, Oh E, Kahng B, et al. Betweenness centrality correlation in social networks[J/OL]. Phys Rev E Stat Nonlin Soft Matter Phys, 2003, 67(1 Pt 2):017101[2018-05-02]. https://www.ncbi.nlm.nih.gov/pubmed/12636633. DOI:10.1103/PhysRevE.67.017101.
[18] Ronnekleiv-Kelly SM, Burkhart RA, Pawlik TM. Molecular markers of prognosis and therapeutic targets in metastatic colorectal cancer[J]. Surg Oncol, 2016, 25(3):190-199. DOI:10.1016/j.suronc.2016. 05.018.
[19] Leroi N, Lallemand F, Coucke P, et al. Impacts of Ionizing Radiation on the Different Compartments of the Tumor Microenvironment[J]. Front Pharmacol, 2016, 7:78. DOI:10.3389/fphar.2016.00078.
[20] Moncharmont C, Levy A, Guy JB, et al. Radiation-enhanced cell migration/invasion process:a review[J]. Crit Rev Oncol Hematol, 2014, 92(2):133-142. DOI:10.1016/j.critrevonc.2014.05.006.
[21] Basu AK. DNA damage, mutagenesis and cancer[J]. Int J Mol Sci, 2018, 19(4):970-970. DOI:10.3390/ijms19040970.
[22] Lee SY, Jeong EK, Ju MK, et al. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation[J]. Mol Cancer, 2017, 16(1):10. DOI:10.1186/s12943-016-0577-4.
[23] Sharma A, Mendonca J, Ying J, et al. The prostate metastasis suppressor gene NDRG1 differentially regulates cell motility and invasion[J]. Mol Oncol, 2017, 11(6):655-669. DOI:10.1002/1878-0261.12059.
[24] Ma J, Gao Q, Zeng S, et al. Knockdown of NDRG1 promote epithelial-mesenchymal transition of colorectal cancer via NF-κB signaling[J]. J Surg Oncol, 2016, 114(4):520-527. DOI:10.1002/jso.24348.
[25] Agarwal S, Ghosh R, Chen Z, et al. Transmembrane adaptor protein PAG1 is a novel tumor suppressor in neuroblastoma[J]. Oncotarget, 2016, 7(17):24018-24026. DOI:10.18632/oncotarget.8116.
[26] Ke Q, Wu J, Ming B, et al. Identification of the PAG1 gene as a novel target of inherent radioresistance in human laryngeal carcinoma cells[J]. Cancer Biother Radiopharm, 2012, 27(10):678-684. DOI:10.1089/cbr.2012.1191.
[27] Wang C, Li P, Xuan J, et al. Cholesterol Enhances Colorectal Cancer Progression via ROS Elevation and MAPK Signaling Pathway Activation[J]. Cell Physiol Biochem, 2017, 42(2):729-742. DOI:10.1159/000477890.
[28] Lillis AP, Van Duyn LB, Murphy-Ullrich JE, et al. LDL receptor-related protein 1:unique tissue-specific functions revealed by selective gene knockout studies[J]. Physiol Rev, 2008, 88(3):887-918. DOI:10.1152/physrev.00033.2007.
[29] Li Y, Reynolds RC. LRP1:a tumor and metastasis promoter or suppressor?[J]. Biochem Pharmacol, 2012, 1(5):121. DOI:10.4172/2167-0501.1000e121.
[30] Xu J, Zhang T, Wang T, et al. PIM kinases:an overview in tumors and recent advances in pancreatic cancer[J]. Future Oncol, 2014, 10(5):865-876. DOI:10.2217/fon.13.229.
[31] Zemskova M, Sahakian E, Bashkirova S, et al. The PIM1 kinase is a critical component of a survival pathway activated by docetaxel and promotes survival of docetaxel-treated prostate cancer cells[J]. J Biol Chem, 2008, 283(30):20635-20644. DOI:10.1074/jbc.M709479200.
[32] Gu H, Liu M, Ding C, et al. Hypoxia-responsive miR-124 and miR-144 reduce hypoxia-induced autophagy and enhance radiosensitivity of prostate cancer cells via suppressing PIM1[J]. Cancer Med, 2016, 5(6):1174-1182. DOI:10.1002/cam4.664.
[33] Blasi F, Carmeliet P. uPAR:a versatile signalling orchestrator[J]. Nat Rev Mol Cell Biol, 2002, 3(12):932-943. DOI:10.1038/nrm977.
[34] Foekens JA, Peters HA, Look MP, et al. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients[J]. Cancer Res, 2000, 60(3):636-643.

相似文献/References:

[1]储小飞,赵舒怡,樊赛军.肿瘤干细胞与辐射抗性的研究进展[J].国际放射医学核医学杂志,2015,39(5):431.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 019]
 chu xiaofei,zhao shuyi,fan saijun..advance progress of cancer stem cells and radioresistance[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(4):431.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 019]
[2]黄天骄,史学森,孙凯.CT虚拟结肠镜对早期筛查结直肠癌的研究进展[J].国际放射医学核医学杂志,2016,40(6):474.[doi:10.3760/cma.j.issn.1673-4114.2016.06.014]
 Huang Tianjiao,Shi Xuesen,Sun Kai.Research progress of CT virtual colonoscopy for early screening of colorectal neoplasmas[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(4):474.[doi:10.3760/cma.j.issn.1673-4114.2016.06.014]
[3]马佶赟,石洪成.PET-CT在结直肠癌肝转移诊治中的应用进展[J].国际放射医学核医学杂志,2010,34(4):212.[doi:10.3760/cma.j.issn.1673-4114.2010.04.006]
 MA Ji-yun,SHI Hong-cheng.Progress in application of PET-CT in diagnosis and therapy of liver metastasis from colorectal cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2010,34(4):212.[doi:10.3760/cma.j.issn.1673-4114.2010.04.006]
[4]胡红永,汤建林,李玉莹,等.肿瘤标志物CEA、CA19-9、CA242联检在结直肠癌患者诊断中的应用[J].国际放射医学核医学杂志,2010,34(2):97.[doi:10.3760/cma.j.issn.1673-4114.2010.02.009]
 HU Hong-yong,TANG Jian-lin,LI Yu-ying,et al.The value of combined tumor markers of CEA, CA19-9 and CA242 for diagnosis of patients with colorectal cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2010,34(4):97.[doi:10.3760/cma.j.issn.1673-4114.2010.02.009]
[5]张悦.18F-氟脱氧葡萄糖PET和PET-CT在结直肠癌术后复发或转移中的应用价值[J].国际放射医学核医学杂志,2007,31(1):34.
 ZHANG Yue.The value of 18F-fluorodeoxyglucose PET and PET-CT in the detection of recurrence and metastases of colorectal cancer post-operation[J].International Journal of Radiation Medicine and Nuclear Medicine,2007,31(4):34.
[6]渠浩,王振军,陈大志,等.18F-氟代脱氧葡萄糖正电子放射导向手术在结直肠癌治疗中的初步应用[J].国际放射医学核医学杂志,2006,30(3):145.
 QU Hao,WANG Zhen-jun,CHEN Da-zhi,et al.The preliminary study using 18F-fluorodeoxyglucose positron-radioguided surgery for colorectal carcinoma operation[J].International Journal of Radiation Medicine and Nuclear Medicine,2006,30(4):145.
[7]严惟力,黄钢.乳腺癌辐射抗性的影响因素及其可能作用[J].国际放射医学核医学杂志,2006,30(4):193.
 YAN Wei-li,HUANG Gang.Factors implicated to radioresistance of breast cancer and their possible roles[J].International Journal of Radiation Medicine and Nuclear Medicine,2006,30(4):193.
[8]薛景,刘芬菊.PI3K/Akt与胶质瘤辐射抗性[J].国际放射医学核医学杂志,2005,29(1):40.
 XUE Jing,LIU Fen-ju.PI3K/Akt and radioresistance of glioma[J].International Journal of Radiation Medicine and Nuclear Medicine,2005,29(4):40.
[9]陈剑,刘芬菊.抗辐射球菌辐射抗性机制的研究[J].国际放射医学核医学杂志,2003,27(5):225.
 CHEN Jian,LIU Fen-ju.Researches of radioresistance of Deinococcus radiodurans[J].International Journal of Radiation Medicine and Nuclear Medicine,2003,27(4):225.
[10]田蓉蓉,薄云峰,张毅勋,等.18F-FDG PET/CT显像与结直肠癌治疗前分期的相关性研究[J].国际放射医学核医学杂志,2018,(1):9.[doi:10.3760/cma.j.issn.1673-4114.2018.01.002]
 Tian Rong-rong,Bo Yunfeng,Zhang Yixun,et al.Correlation between 18F-FDG PET/CT and pretreatment staging of colorectal cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(4):9.[doi:10.3760/cma.j.issn.1673-4114.2018.01.002]

备注/Memo

备注/Memo:
收稿日期:2018-05-03。
基金项目:国家自然科学基金(81703042、81572969、81730086);天津市科技支撑项目(14ZCZDSY00001);科技部科研院所技术开发研究专项项目(2014EG150134);中国医学科学院医学与健康技术创新工程(2016-I2M-1-017)
通讯作者:樊赛军,Email:fansaijun@irm-cams.ac.cn
更新日期/Last Update: 2018-07-25