[1]刘佳,高刚,朴春南,等.调节肿瘤放射敏感性的miRNAs研究进展[J].国际放射医学核医学杂志,2016,40(2):159-164.[doi:10.3760/cma.j.issn.1673-4114.2016.02.015]
 Liu Jia,Gao Gang,Piao Chunnan,et al.Progress of microRNAs in regulating tumor radiation sensitivity[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):159-164.[doi:10.3760/cma.j.issn.1673-4114.2016.02.015]
点击复制

调节肿瘤放射敏感性的miRNAs研究进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
40
期数:
2016年第2期
页码:
159-164
栏目:
出版日期:
2016-03-25

文章信息/Info

Title:
Progress of microRNAs in regulating tumor radiation sensitivity
作者:
刘佳 高刚 朴春南 刘建香
100088 北京, 中国疾病预防控制中心辐射防护与核安全医学所, 辐射防护与核应急中国疾病预防控制中心重点实验室
Author(s):
Liu Jia Gao Gang Piao Chunnan Liu Jianxiang
China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
关键词:
微RNAs放射疗法计算机辅助辐射耐受性
Keywords:
MicroRNAsRadiotherapy computer-assistedRadiation tolerance
DOI:
10.3760/cma.j.issn.1673-4114.2016.02.015
摘要:
miRNA是一类非编码的小RNA,它主要利用碱基互补配对的方式与特异性靶基因信使RNA的3’-非翻译区结合,通过降解靶RNA或抑制蛋白质的翻译合成,从而实现对靶基因转录后水平的调控。放射治疗是治疗肿瘤的主要手段之一,肿瘤的辐射生物效应对其放疗效果至关重要,也是确定某肿瘤组织辐射敏感或辐射耐受的一个重要因素。研究证实,miRNAs通过影响DNA损伤修复、细胞周期检查点、凋亡、信号转导、肿瘤组织微环境等因素参与肿瘤放疗敏感性的调控,miRNAs为肿瘤放射治疗提供了新途径。
Abstract:
MiRNA is a small non-protein coding RNA that play an important role in gene regulation by targeting the 3’untranslated region of specific target gene mRNA, leading to the degradation of target RNA or inhibition of protein synthesis in post-transcriptional level. Radiation therapy is a main method for cancer treatment. Tumor radiation biological effect is critical in radiotherapy and a core determining factor of tumor radioresistance or radiosensitivity. Recent studies have demonstrated that miRNA can regulate tumor radiosensitivity by affecting DNA damage repair, cell cycle checkpoint, apoptosis, signal transduction pathways and tumor microenvironment etc. miRNA offer potential new approach to complement the radiotherapy for tumor treatment.

参考文献/References:

[1] Chaudhry MA. Radiation-induced microRNA:discovery, functional analysis, and cancer radiotherapy[J]. J Cell Biochem, 2014, 115(3):436-449. DOI:10. 1002/jcb. 24694.
[2] Zhao L, Bode AM, Cao Y, et al. Regulatory mechanisms and clinical perspectives of miRNA in tumor radiosensitivity[J]. Carcinogenesis, 2012, 33(11):2220-2227. DOI:10. 1093/carcin/bgs235.
[3] Zhao L, Lu X, Cao Y. MicroRNA and signal transduction pathways in tumor radiation response[J]. Cell Signal, 2013, 25(7):1625-1634. DOI:10. 1016/j. cellsig. 2013. 04. 004.
[4] Tong AW, Nemunaitis J. Modulation of miRNA activity in human cancer:a new paradigm for cancer gene therapy?[J]. Cancer Gene Ther, 2008, 15(6):341-355. DOI:10. 1038/cgt. 2008. 8.
[5] Griveau A, Bejaud J, Anthiya S, et al. Silencing of miR-21 by locked nucleic acid-lipid nanocapsule complexes sensitize human glioblastoma cells to radiation-induced cell death[J]. Int J Pharm, 2013, 454(2):765-774. DOI:10. 1016/j. ijpharm. 2013. 05. 049.
[6] Huang S, Li XQ, Chen X, et al. Inhibition of microRNA-21 increases radiosensitivity of esophageal cancer cells through phosphatase and tensin homolog deleted on chromosome 10 activation[J]. Dis Esophagus, 2013, 26(8):823-831. DOI:10. 1111/j. 1442-2050. 2012. 01389. x.
[7] 狄英波, 薛茗方, 刘雅娟, 等. miR-21在辐射敏感性不同的3种乳腺癌细胞株中的表达差异及意义[J]. 中国妇幼保健, 2013, 28(9):1499-1501. DOI:10. 7620/zgfybj. j. issn. 1001-4411. 2013.28.43. Di YB, Xue MF, Liu YJ, et al. Differences and significances of miR-21 expressions in three kinds of breast cancer cell strains of different radiative sensitivities[J]. Matern Child Health Care China, 2013, 28(9):1499-1501.
[8] Anastasov N, H?fig I, Vasconcellos IG, et al. Radiation resistance due to high expression of miR-21 and G2/M checkpoint arrest in breast cancer cells[J]. Radiat Oncol, 2012, 7(20):206. DOI:10. 1186/1748-717X-7-206.
[9] Huang X, Ding L, Bennewith KL, et al. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation[J]. Mol Cell, 2009, 35(6):856-867. DOI:10. 1016/j. molcel. 2009. 09. 006.
[10] Karar J, Maity A. Modulating the tumor microenvironment to increase radiation responsiveness[J]. Cancer Biol Ther, 2009, 8(21):1994-2001.
[11] Yang W, Sun T, Cao J, et al. Downregulation of miR-210 expression inhibits proliferation, induces apoptosis and enhances radiosensitivity in hypoxic human hepatoma cells in vitro[J]. Exp Cell Res, 2012, 318(8):944-954. DOI:10. 1016/j. yexcr. 2012. 02. 010.
[12] Yang W, Wei J, Sun T, et al. Effects of knockdown of miR-210 in combination with ionizing radiation on human hepatoma xenograft in nude mice[J]. Radiat Oncol, 2013, 8(2):102. DOI:10. 1186/1748-717X-8-102.
[13] Grosso S, Doyen J, Parks SK, et al. MiR-210 promotes a hypoxic phenotype and increases radioresistance in human lung cancer cell lines[J/OL]. Cell Death Dis, 2013, 4(3):e544[2015-10-20]. http://www.nature.com/cddis/journal/v4/n3/full/cddis201371a.html. DOI:10.1038/cddis.2013.71.
[14] Cheng HY, Obrietan K. Revealing a role of microRNAs in the regulation of the biological clock[J]. Cell Cycle, 2007, 6(24):3034-3035.
[15] Ciafrè SA, Galardi S, Mangiola A, et al. Extensive modulation of a set of microRNAs in primary glioblastoma[J]. Biochem Biophys Res Commun, 2005, 334(4):1351-1358. DOI:10. 1016/j. bbrc. 2005. 07. 030.
[16] Gramantieri L, Fornari F, Ferracin M, et al. MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality[J]. Clin Cancer Res, 2009, 15(16):5073-5081. DOI:10. 1158/1078-0432. CCR-09-0092.
[17] Koelz M, Lense J, Wrba F, et al. Down-regulation of miR-221 and miR-222 correlates with pronounced Kit expression in gastrointestinal stromal tumors[J]. Int J Oncol, 2011, 38(2):503-511. DOI:10. 3892/ijo. 2010. 857.
[18] Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues[J]. Oncogene, 2006, 25(17):2537-2545. DOI:10. 1038/sj. onc. 1209283.
[19] Gottardo F, Liu CG, Ferracin M, et al. Micro-RNA profiling in kidney and bladder cancers[J]. Urol Oncol, 2007, 25(5):387-392. DOI:10. 1016/j. urolonc. 2007. 01. 019.
[20] He H, Jazdzewski K, Li W, et al. The role of microRNA genes in papillary thyroid carcinoma[J]. Proc Natl Acad Sci USA, 2005, 102(52):19075-19080. DOI:10. 1073/pnas. 0509603102.
[21] Lee EJ, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature in pancreatic cancer[J]. Int J Cancer, 2007, 120(5):1046-1054. DOI:10. 1002/ijc. 22394.
[22] Vlachos P, Joseph B. The Cdk inhibitor p57(Kip2) controls LIM-kinase 1 activity and regulates actin cytoskeleton dynamics[J]. Oncogene, 2009, 28(47):4175-4188. DOI:10. 1038/onc. 2009. 269.
[23] Chun-Zhi Z, Lei H, An-Ling Z, et al. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN[J]. BMC Cancer, 2010, 10:367. DOI:10. 1186/1471-2407-10-367.
[24] 张晓槟. 反义microRNA-221对结直肠癌细胞放射敏感性的影响及相关机制[D]. 广州:南方医科大学, 2013. Zhang XB. Effect of antisense microRNA-221 on radiation sensitivity of colorectal cancer cells and the underlying mechanism[D]. Guangzhou:Southern Medical University, 2013.
[25] Bargaje R, Hariharan M, Scaria V, et al. Consensus miRNA expression profiles derived from interplatform normalization of microarray data[J]. RNA, 2010, 16(1):16-25. DOI:10. 1261/rna. 1688110.
[26] Yue J, Tigyi G. Conservation of miR-15a/16-1 and miR-15b/16-2 clusters[J]. Mamm Genome, 2010, 21(1/2):88-94. DOI:10. 1007/s00335-009-9240-3.
[27] Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2[J]. Proc Natl Acad Sci USA, 2005, 102(39):13944-13949. DOI:10. 1073/pnas. 0506654102.
[28] Bottoni A, Piccin D, Tagliati F, et al. miR-15a and miR-16-1 down-regulation in pituitary adenomas[J]. J Cell Physiol, 2005, 204(1):280-285. DOI:10. 1002/jcp. 20282.
[29] Bonci D, Coppola V, Musumeci M, et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities[J]. Nat Med, 2008, 14(11):1271-1277. DOI:10. 1038/nm. 1880.
[30] Calin GA, Cimmino A, Fabbri M, et al. MiR-15a and miR-16-1 cluster functions in human leukemia[J]. Proc Natl Acad Sci USA, 2008, 105(13):5166-5171. DOI:10. 1073/pnas. 0800121105.
[31] Tsang TY, Tang WY, Chan JY, et al. P-glycoprotein enhances radiation-induced apoptotic cell death through the regulation of miR-16 and Bcl-2 expressions in hepatocellular carcinoma cells[J]. Apoptosis, 2011, 16(5):524-535. DOI:10.1007/s10495-011-0581-5.
[32] 刘琴. miR-16家族在肿瘤细胞周期调控中的作用研究[D]. 北京:中国人民解放军军事医学科学院, 2008. Liu Q. Function research of miR-16 family on tumer cell cycle regulation[D]. Beijing:Academy of Military Medical Sciences, 2008.
[33] Mei Z, Su T, Ye J, et al. The miR-15 family enhances the radiosensitivity of breast cancer cells by targeting G2 checkpoints[J]. Radiat Res, 2015, 183(2):196-207. DOI:10. 1667/RR13784. 1.
[34] Shingara J, Keiger K, Shelton J, et al. An optimized isolation and labeling platform for accurate microRNA expression profiling[J]. RNA, 2005, 11(9):1461-1470. DOI:10. 1261/rna. 2610405.
[35] Zhang P, Wang L, Rodriguez-Aguayo C, et al. miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13[J]. Nat Commun, 2014, 5:5671. DOI:10.1038/ncomms6671.
[36] Zhang P, Wei Y, Wang L, et al. ATM-mediated stabilization of ZEB1 promotes DNA damage response and radioresistance through CHK1[J]. Nat Cell Biol, 2014, 16(9):864-875. DOI:10. 1038/ncb3013.
[37] He L, He XY, Lim LP, et al. A microRNA component of the p53 tumour suppressor network[J]. Nature, 2007, 447(7148):1130-1134. DOI:10. 1038/nature05939.
[38] Raver-Shapira N, Marciano E, Meiri E, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis[J]. Mol Cell, 2007, 26(5):731-743. DOI:10. 1016/j. molcel. 2007. 05. 017.
[39] Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis[J]. Mol Cell, 2007, 26(5):745-752. DOI:10. 1016/j. molcel. 2007. 05. 010.
[40] Tazawa H, Tsuchiya N, Izumiya M, et al. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells[J]. Proc Natl Acad Sci USA, 2007, 104(39):15472-15477. DOI:10. 1073/pnas. 0707351104.
[41] Corney DC, Flesken-Nikitin A, Godwin AK, et al. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth[J]. Cancer Res, 2007, 67(18):8433-8438. DOI:10. 1158/0008-5472. CAN-07-1585.
[42] Tarasov V, Jung P, Verdoodt B, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing:miR-34a is a p53 target that induces apoptosis and G1-arrest[J]. Cell Cycle, 2007, 6(13):1586-1593.
[43] Bommer GT, Gerin I, Feng Y, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes[J]. Curr Biol, 2007, 17(15):1298-1307. DOI:10. 1016/j. cub. 2007. 06. 068.
[44] Maki Y, Asano H, Toyooka S, et al. MicroRNA miR-34b/c enhances cellular radiosensitivity of malignant pleural mesothelioma cells[J]. Anticancer Res, 2012, 32(11):4871-4875.
[45] Thornton JE, Gregory RI. How does Lin28 let-7 control development and disease?[J]. Trends Cell Biol, 2012, 22(9):474-482. DOI:10. 1016/j. tcb. 2012. 06. 001.
[46] Rao L, Huang X, Xu S. Molecular mechanism and related influence factors of Lin28/Let-7 axsis[J]. J Clin Otorhinolaryngol Head Neck Surgery, 2014, 28(9):663-665.
[47] Wang L, Yuan C, Lv K, et al. Lin28 mediates radiation resistance of breast cancer cells via regulation of caspase, H2A. X and Let-7 signaling[J/OL]. PLoS One, 2013, 8(6):e67373[2016-10-20]. https://www.ncbi.nlm.nih.gov/pubmed/?term=23840685. DOI:10.1371/journal. pone. 0067373.
[48] Arora H, Qureshi R, Jin S, et al. miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFκB1[J]. Exp Mol Med, 2011, 43(5):298-304. DOI:10.3858/emm.2011.43.5.031.

相似文献/References:

[1]李景涛,邓垒,张文珏,等.广泛期小细胞肺癌胸部IMRT后发生放射性肺炎的危险因素分析[J].国际放射医学核医学杂志,2016,40(2):100.[doi:10.3760/cma.j.issn.1673-4114.2016.02.003]
 Li Jingtao,Deng Lei,Zhang Wenjue,et al.Risk factor analysis for predicting radiation pneumonitis in extensive stage small cell lung cancer patients receiving IMRT thoracic radiotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):100.[doi:10.3760/cma.j.issn.1673-4114.2016.02.003]
[2]陈晓艳,张江虹,邵春林.STAT3与辐射敏感相关性的研究进展[J].国际放射医学核医学杂志,2016,40(3):191.[doi:10.3760/cma.j.issn.1673-4114.2016.03.007]
 Chen Xiaoyan,Jianghong,Shao Chunlin.Research progresses of correlation between STAT3 and radiosensitivity[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):191.[doi:10.3760/cma.j.issn.1673-4114.2016.03.007]
[3]赵德云,李百龙.植物提取物防治放射性肺损伤的现状与展望[J].国际放射医学核医学杂志,2016,40(3):208.[doi:10.3760/cma.j.issn.1673-4114.2016.03.010]
 Zhao Deyun,Li Bailong.Protective and therapeutic effects of plant extracts on radiation-induced lung injury:present status and future prospects[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):208.[doi:10.3760/cma.j.issn.1673-4114.2016.03.010]
[4]田琦,蒋宁一,郑丽.265例精细个体化131I治疗Graves甲亢的疗效观察[J].国际放射医学核医学杂志,2016,40(4):259.[doi:10.3760/cma.j.issn.1673-4114.2016.04.004]
 Tian Qi,Jiang Ningyi,Zheng Li.Therapeutic effect of fine individual 131I treatment on Graves disease hyperthyroidism[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):259.[doi:10.3760/cma.j.issn.1673-4114.2016.04.004]
[5]邓大平,卢峰,孙洪强,等.颅脑肿瘤放射治疗时射野外器官吸收剂量体模法测量与分析[J].国际放射医学核医学杂志,2016,40(4):272.[doi:10.3760/cma.j.issn.1673-4114.2016.04.007]
 Deng Daping,Lu Feng,Sun Hongqiang,et al.Test and analysis of out-of-field organ dose in intracranial tumor radiotherapy using phantom[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):272.[doi:10.3760/cma.j.issn.1673-4114.2016.04.007]
[6]赵舒怡,储小飞,樊赛军.血清肿瘤标志物与肿瘤放疗疗效评估的研究进展[J].国际放射医学核医学杂志,2015,39(5):427.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 018]
 zhao shuyi,chu xiaofei,fan saijun..progression of study on serum tumor markers in evaluation of tumor radiotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(2):427.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 018]
[7]赵徵鑫,翟贺争,张文艺,等.质子重离子治疗肿瘤的进展[J].国际放射医学核医学杂志,2016,40(5):384.[doi:10.3760/cma.j.issn.1673-4114.2016.05.010]
 Zhao Zhixin,Zhai Hezheng,Zhang Wenyi,et al.Development of proton heavy ion in tumor therapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):384.[doi:10.3760/cma.j.issn.1673-4114.2016.05.010]
[8]段永璇,邹晓艳,段秀梅,等.数据解析在肿瘤放射治疗中的应用[J].国际放射医学核医学杂志,2015,39(6):505.[doi:10.3760/cma.j.issn.1673-4114.2015.06.015]
 Duan Yongxuan,Zou Xiaoyan,Duan Xiumei,et al.Data analysis in the field of tumor radiation therapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(2):505.[doi:10.3760/cma.j.issn.1673-4114.2015.06.015]
[9]贾立立,孟粹达,刘晓冬,等.头颈部肿瘤放疗中转化医学相关机制的研究进展[J].国际放射医学核医学杂志,2015,39(3):247.[doi:10.3760/cma.j.issn.1673-4114.2015.03.013]
 Jia Lili,Meng Cuida,Liu Xiaodong,et al.Development in translational medicine-related mechanisms of radiotherapy for head and neck cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(2):247.[doi:10.3760/cma.j.issn.1673-4114.2015.03.013]
[10]曹婉婷,李浣洋,陈雪英,等.正常组织在放射治疗中并发的迟发性损伤[J].国际放射医学核医学杂志,2015,39(3):260.[doi:10.3760/cma.j.issn.1673-4114.2015.03.016]
 Cao Wanting,Li Huanyang,Chen Xueying,et al.Late effects of radiotherapy on normal tissue[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(2):260.[doi:10.3760/cma.j.issn.1673-4114.2015.03.016]
[11]周冲,王利利,周菊英.微小RNAs在分子放射生物学中的研究进展[J].国际放射医学核医学杂志,2009,33(2):109.[doi:10.3760/cma.j.issn.1673-4114.2009.02.014]
 ZHOU Chong,WANG Li-li,ZHOU Ju-ying.Progress of microRNAs in molecular radiobiology[J].International Journal of Radiation Medicine and Nuclear Medicine,2009,33(2):109.[doi:10.3760/cma.j.issn.1673-4114.2009.02.014]

备注/Memo

备注/Memo:
收稿日期:2015-10-23。
基金项目:加强中国生物剂量计研究项目(17092)
通讯作者:刘建香,Email:jxliu@163.com
更新日期/Last Update: 1900-01-01