[1]储小飞,赵舒怡,樊赛军.肿瘤干细胞与辐射抗性的研究进展[J].国际放射医学核医学杂志,2015,39(5):431-436.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 019]
 chu xiaofei,zhao shuyi,fan saijun..advance progress of cancer stem cells and radioresistance[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(5):431-436.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 019]
点击复制

肿瘤干细胞与辐射抗性的研究进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
39
期数:
2015年第5期
页码:
431-436
栏目:
综述
出版日期:
2015-09-15

文章信息/Info

Title:
advance progress of cancer stem cells and radioresistance
作者:
储小飞赵舒怡樊赛军
300192 天津,中国医学科学院北京协和医学院放射医学研究所,天津市放射医学与分子核医学实验室
Author(s):
chu xiaofei zhao shuyi fan saijun.
tianjin key laboratory of radiation medicine and molecular nuclear biology, institution of radiation medicine, chinese academy of medical sciences, tianjin 300192, china
关键词:
肿瘤干细胞乳腺肿瘤胶质母细胞瘤靶向治疗辐射抗性
Keywords:
cancer stem cells breast neoplasms glioblastoma targeted therapy radioresistance
DOI:
10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 019
摘要:
放射治疗是治疗肿瘤的常规手段,而辐射抗性的产生是限制放射治疗广泛应用的重要因素之一。笔者简述了辐射耐受乳腺癌和多形性成角质母细胞瘤的特异性肿瘤干细胞特征的研究进展,为与放射治疗相结合的肿瘤靶向治疗提供新的研究思路。
Abstract:
radiotherapy is a routine strategy for cancer treatment, however, occurrence of therapy resistance limits wide application of radiotherapy. this review summarizes the radioresistance of breast cancer and glioblastoma multiforme that is conferred by cancer stem cells, to order to provide a new idea for exploration of tumor targeting therapy with radiotherapy.

参考文献/References:

[1]ahmed km, li jj. atm-nf-kappab connection as a target for tumor radiosensitization[j]. curr cancer drug targets, 2007, 7(4):335-342.
[2]reya t, morrison sj, clarke mf, et al. stem cells, cancer, and cancer stem cells[j]. nature, 2001, 414(6859):105-111.
[3]bonnet d, dick je. human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[j]. nat med, 1997, 3(7):730-737.
[4]driessens g, beck b, caauwe a, et al. defining the mode of tumour growth by clonal analysis[j]. nature, 2012, 488(7412):527-530.
[5]jordan ct, guzman ml, noble m. cancer stem cells[j]. n engl j med, 2006, 355(12):1253-1261.
[6]ch′ang hj, maj jg, paris f, et al. atm regulates target switching to escalating doses of radiation in the intestines[j]. nat med, 2005, 11(5):484-490.
[7]bao s, wu Q, mclendon re, et al. glioma stem cells promote radioresistance by preferential activation of the dna damage response[j]. nature, 2006, 444(7120):756-760.
[8]shimura t, noma n, oikawa t, et al. activation of the akt/cyclin d1/cdk4 survival signaling pathway in radioresistant cancer stem cells[j/ol]. oncogenesis, 2012, 1(6):12[2015-08-30]. http://www. ncbi. nlm. nih. gov/pmc/articles/pmc3412645/pdf/oncsis201212a. pdf.
[9]diehn m, cho rw, clarke mf. therapeutic implications of the cancer stem cell hypothesis[j]. semin radiat oncol, 2009, 19(2):78-86.
[10]kim jj, tannock if. repopulation of cancer cells during therapy:an important cause of treatment failure[j]. nat rev cancer, 2005, 5(7):516-525.
[11]wang y, li w, patel ss, et al. blocking the formation of radiation-induced breast cancer stem cells[j]. oncotarget, 2014, 5(11):3743-3755.
[12]gebski v, lagleva m, keech a, et al. survival effects of postmastectomy adjuvant radiation therapy using biologically equivalent doses:a clinical perspective[j]. j natl cancer inst, 2006, 98(1):26-38.
[13]gupta pb, chaffer cl, weinberg ra. cancer stem cells:mirage or reality?[j]. nat med, 2009, 15(9):1010-1012.
[14]yu vy, nguyen d, pajonk f, et al. incorporating cancer stem cells in radiation therapy treatment response modeling and the implication in glioblastoma multiforme treatment resistance[j]. int j radiat oncol biol phys, 2015, 91(4):866-875.
[15]tothova z, gilliland dg. a radical bailout strategy for cancer stem cells[j]. cell stem cell, 2009, 4(3):196-197.
[16]diehn m, cho rw, lobo na, et al. association of reactive oxygen species levels and radioresistance in cancer stem cells[j]. nature, 2009, 458(7239):780-783.
[17]spitz dr, azzam ei, li jj, et al. metabolic oxidation/reduction reactions and cellular responses to ionizing radiation:a unifying concept in stress response biology[j]. cancer metastasis rev, 2004, 23(3/4):311-322.
[18]phillips tm, mcbride wh, pajonk f. the response of cd24(-/low)/cd44+ breast cancer-initiating cells to radiation[j]. j natl cancer inst, 2006, 98(24):1777-1785.
[19]l-hajj m, wicha ms, benito-hernandez a, et al. prospective identification of tumorigenic breast cancer cells[j]. proc natl acad sci u s a, 2003, 100(7):3983-3988.
[20]zhang m, atkinson rl, rosen jm. selective targeting of radiation-resistant tumor-initiating cells[j]. proc natl acad sci u s a, 2010, 107(8):3522-3527.
[21]cao n, li s, wang z, et al. nf-kappab-mediated her2 overexpression in radiation-adaptive resistance[j]. radiat res, 2009, 171(1):9-21.
[22]duru n, fan m, candas d, et al. her2-associated radioresistance of breast cancer stem cells isolated from her2-negative breast cancer cells[j]. clin cancer res, 2012, 18(24):6634-6647.
[23]huang ph, cavenee wk, furnari fb, et al. uncovering therapeutic targets for glioblastoma:a systems biology approach[j]. cell cycle, 2007, 6(22):2750-2754.
[24]kang mk, hur bi, ko mh, et al. potential identity of multi-potential cancer stem-like subpopulation after radiation of cultured brain glioma[j/ol]. bmc neurosci, 2008, 9:15[2015-08-30]. http://www. ncbi. nlm. nih. gov/pmc/articles/pmc2266936/pdf/1471-2202-9-15. pdf
[25]hemmati hd, nakano i, lazareff ja, et al. cancerous stem cells can arise from pediatric brain tumors[j]. proc natl acad sci u s a, 2003, 100(25):15178-15183.
[26]singh sk, clarke id, terasaki m, et al. identification of a cancer stem cell in human brain tumors[j]. neurosurgery, 2003, 53(2):487-488.
[27]singh sk, hawkins c, clarke id, et al. identification of human brain tumour initiating cells[j]. nature, 2004, 432(715):396-401.
[28]galli r, binda e, orfanelli u, et al. isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma[j]. cancer res, 2004, 64(19):7011-7021.
[29]lim yc, roberts tl, day bw, et al. a role for homologous recombination and abnormal cell-cycle progression in radioresistance of glioma-initiating cells[j]. mol cancer ther, 2012, 11(9):1863-1872.
[30]uchida n, buck dw, he d, et al. direct isolation of human central nervous system stem cells[j]. proc natl acad sci u s a, 2000, 97(26):14720-14725.
[31]tamura k, aoyagi m, ando n, et al. expansion of cd133-positive glioma cells in recurrent de novo glioblastomas after radiotherapy and chemotherapy[j]. j neurosurg, 2013, 119(5):1145-1155.
[32]cheng l, wu Q, huang z, et al. l1cam regulates dna damage checkpoint response of glioblastoma stem cells through nbs1[j]. embo j, 2011, 30(5):800-813.
[33]squatrito m, brennan cw, helmy k, et al. loss of atm/chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas[j]. cancer cell, 2010, 18(6):619-629.
[34]facchino s, abdouh m, chatoo w, et al. bmi1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the dna damage response machinery[j]. j neurosci, 2010, 30(30):10096-10111.
[35]gray gk, mcfarland bc, nozell se, et al. nf-κb and stat3 in glioblastoma:therapeutic targets coming of age[j]. expert rev neurother, 2014, 14(11):1293-1306.
[36]hambardzumyan d, becher oj, rosenblum mk, et al. pi3k pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo[j]. genes dev, 2008, 22(4):436-448.
[37]danial nn, korsmeyer sj. cell death:critical control points[j]. cell, 2004, 116(2):205-219.
[38]ahmed km, nantajit d, fan m, et al. coactivation of atm/erk/nf-kappab in the low-dose radiation-induced radioadaptive response in human skin keratinocytes[j]. free radic biol med, 2009, 46(11):1543-1550.
[39]bhat kp, balasubramaniyan v, vaillant b, et al. mesenchymal differentiation mediated by nf-κb promotes radiation resistance in glioblastoma[j]. cancer cell, 2013, 24(3):331-346.
[40]wiegman em, blaese ma, loeffler h, et al. tgfbeta-1 dependent fast stimulation of atm and p53 phosphorylation following exposure to ionizing radiation does not involve tgfbeta-receptor i signalling[j]. radiother oncol, 2007, 83(3):289-295.
[41]pellicciotta i, marciscano ae, hardee me, et al. development of a novel multiplexed assay for quantification of transforming growth factor-β(tgf-β)[j]. growth factors, 2015, 33(2):79-91.
[42]wang x, gao z, wu x, et al. inhibitory effect of tgf-β peptide antagonist on the fibrotic phenotype of human hypertrophic scar fibroblasts[j/ol]. pharm biol, 2015:1-9[2015-08-30]. http://www. tandfonline. com/doi/pdf/10. 3109/13880209. 2015. 1059862.
[43]yu dk, lee b, kwon m, et al. phlorofucofuroeckol b suppresses inflammatory responses by down-regulating nuclear factor κb activation via akt, erk, and jnk in lps-stimulated microglial cells[j]. int immunopharmacol, 2015, 28(2):1068-1075.
[44]abel ev, kim ej, wu j, et al. the notch pathway is important in maintaining the cancer stem cell population in pancreatic cancer[j/ol]. plos one, 2014, 9(3):91983[2015-08-30]. http://www. ncbi. nlm. nih. gov/pmc/articles/pmc3960140/pdf/pone. 0091983. pdf.
[45]wang j, wakeman tp, lathia jd, et al. notch promotes radioresistance of glioma stem cells[j]. stem cells, 2010, 28(1):17-28.
[46]palaga t, ratanabunyong s, pattarakankul t, et al. notch signaling regulates expression of mcl-1 and apoptosis in ppd-treated macrophages[j]. cell mol immunol, 2013, 10(5):444-452.
[47]griner em, kazanietz mg. protein kinase c and other diacylglycerol effectors in cancer[j]. nat rev cancer, 2007, 7(4):281-294.
[48]kim mj, kim rk, yoon ch, et al. importance of pkcδ signaling in fractionated-radiation-induced expansion of glioma-initiating cells and resistance to cancer treatment[j]. j cell sci, 2011, 124(pt 18):3084-3094.
[49]lomonaco sl, finniss s, xiang c, et al. the induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells[j]. int j cancer, 2009, 125(3):717-722.

相似文献/References:

[1]杨雷,袁卫红,王家平,等.99Tcm-MIBI显像与钼靶X线对乳腺癌诊断的比较研究[J].国际放射医学核医学杂志,2016,40(2):111.[doi:10.3760/cma.j.issn.1673-4114.2016.02.005]
 Yang Lei,Yuan Weihong,Wang Jiaping,et al.Diagnostic value of technetium 99Tcm sestamibi and X-ray mammography in breast cancer: a comparison study[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):111.[doi:10.3760/cma.j.issn.1673-4114.2016.02.005]
[2]马乐,张万春,李晓敏.乳腺癌前哨淋巴结核素显像新进展[J].国际放射医学核医学杂志,2016,40(2):145.[doi:10.3760/cma.j.issn.1673-4114.2016.02.012]
 Ma Le,Zhang Wanchun,Li Xiaomin.Evolution of radionuclide imaging of sentinel node lymphscintigraphy in breast cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):145.[doi:10.3760/cma.j.issn.1673-4114.2016.02.012]
[3]陈伟君,孙达.99Tcm-MIBI显像在乳腺癌新辅助化疗中的应用价值[J].国际放射医学核医学杂志,2015,39(6):487.[doi:10.3760/cma.j.issn.1673-4114.2015.06.011]
 Chen Weijun,Sun Da.Clinical value of 99Tcm-MIBI imaging in neoadjuvant chemotherapy of breast cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(5):487.[doi:10.3760/cma.j.issn.1673-4114.2015.06.011]
[4]胡鸿,唐刚华,聂大红.乳腺癌分子显像研究进展[J].国际放射医学核医学杂志,2015,39(1):91.[doi:10.3760/cma.j.issn.1673-4114.2015.01.019]
 Hu Hong,Tang Ganghua,Nie Dahong.Progress on molecular imaging of breast cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(5):91.[doi:10.3760/cma.j.issn.1673-4114.2015.01.019]
[5]黄娟,颜剑豪,梁联保,等.注射钆剂后弥散加权成像对乳腺肿瘤诊断的影响[J].国际放射医学核医学杂志,2015,39(4):287.[doi:10.3760/cma.j.issn.1673-4114.2015.04.003]
 Huang Juan,Yan Jianhao,Liang Lianbao,et al.Evaluation of the diffusion-weighted imaging after contrast for the characterization of breast tumors[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(5):287.[doi:10.3760/cma.j.issn.1673-4114.2015.04.003]
[6]李雯,冯彦林.18F-FDG PET/CT评估三阴性乳腺癌新辅助化疗疗效的研究进展[J].国际放射医学核医学杂志,2014,38(3):197.[doi:10.3760/cma.j.issn.1673-4114.2014.03.013]
 Li Wen,Feng Yanlin.Advances of assessment with 18F-FDG PET/CT in triple-negative breast cancer during neoadjuvant chemotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(5):197.[doi:10.3760/cma.j.issn.1673-4114.2014.03.013]
[7]殷丽娜,张旭霞,张俊香,等.Wnt/β-catenin信号通路——乳腺癌的潜在治疗靶点[J].国际放射医学核医学杂志,2014,38(4):252.[doi:10.3760/cma.j.issn.1673-4114.2014.04.011]
 Yin Lina,Zhang Xuxia,Zhang Junxiang,et al.The Wnt/β-catenin signaling pathway-a potential therapeutic target of breast cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(5):252.[doi:10.3760/cma.j.issn.1673-4114.2014.04.011]
[8]刘超,邓智勇,刘鹏杰,等.89SrCL2与唑来膦酸联合治疗乳腺癌转移性骨肿瘤的疗效分析[J].国际放射医学核医学杂志,2014,38(5):300.[doi:10.3760/cma.j.issn.1673-4114.2014.05.006]
 Liu Chao,Deng Zhi-yong,Liu Peng-jie,et al.Analysis on the curative effect of combination therapy with zoledronic acid and 89SrCL2 on bone tumor with breast cancer metastasis[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(5):300.[doi:10.3760/cma.j.issn.1673-4114.2014.05.006]
[9]胡梦裳,章斌.PET/CT显像在乳腺癌疗效评价及预后中的作用[J].国际放射医学核医学杂志,2014,38(5):332.[doi:10.3760/cma.j.issn.1673-4114.2014.05.013]
 Hu Meng-shang,Zhang Bin.The role of PET/CT imaging in the evaluation of the efficacy and prognosis of breast cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(5):332.[doi:10.3760/cma.j.issn.1673-4114.2014.05.013]
[10]王宇峰,刘海娜,张居洋,等.SPECT/CT融合显像对乳腺癌骨转移的诊断价值[J].国际放射医学核医学杂志,2014,38(6):387.[doi:10.3760/cma.j.issn.1673-4114.2014.06.010]
 Wang Yu-feng,Liu Hai-na,Zhang Ju-yang,et al.Clinical value of SPECT/CT fusion imaging in diagnosing metastatic bone lesions in breast cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(5):387.[doi:10.3760/cma.j.issn.1673-4114.2014.06.010]

备注/Memo

备注/Memo:
基金项目:国家自然科学科学基金(8117217,81572969);中国医学科学院放射医学研究所发展基金(1549)
通信作者:樊赛军(email:fansaijun@irm-acms.ac.cn)
更新日期/Last Update: 2015-09-15