[1]常静林,张玉民,董辉.金纳米粒子在肿瘤放疗中的研究进展[J].国际放射医学核医学杂志,2018,(3):261-264.[doi:10.3760/cma.j.issn.1673-4114.2018.03.012]
 Chang Jinglin,Zhang Yumin,Dong Hui.Advances in the application of gold nanoparticles in tumor radiotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(3):261-264.[doi:10.3760/cma.j.issn.1673-4114.2018.03.012]
点击复制

金纳米粒子在肿瘤放疗中的研究进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
期数:
2018年第3期
页码:
261-264
栏目:
综述
出版日期:
2018-05-25

文章信息/Info

Title:
Advances in the application of gold nanoparticles in tumor radiotherapy
作者:
常静林 张玉民 董辉
300192 天津, 中国医学科学院北京协和医学院放射医学研究所, 天津市放射医学与分子核医学重点实验室
Author(s):
Chang Jinglin Zhang Yumin Dong Hui
Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300192, China
关键词:
纳米粒子肿瘤放射疗法增敏
Keywords:
NanoparticlesGoldNeoplasmsRadiotherapySensitization
DOI:
10.3760/cma.j.issn.1673-4114.2018.03.012
摘要:
放疗在肿瘤的治疗中起着不可替代的作用,但由放疗引起的不良反应以及放疗过程中的肿瘤耐受问题仍未得到根本解决,因此放疗增敏显得尤为重要。金纳米粒子(GNPs)作为新型的纳米类放疗增敏制剂,因其较高的生物相容性受到了专家学者的广泛关注和研究。作为新型的纳米制剂,GNPs的理化性质,包括粒径、表面电荷和组装形态等能够影响体内代谢行为和肿瘤蓄积,因此导致放疗增敏率不同。笔者对近几年GNPs作为放疗增敏制剂的研究进展做进一步的总结和进展性汇报。
Abstract:
Even though radiotherapy plays an important role in the treatment of tumors, the problems of toxic and side effects of normal tissues produced by radiotherapy and tumor tolerance to irradiation have not been solved. Gold nanoparticles(GNPs) are a new type of nanoparticle radiosensitizer. As a radiosensitizer, GNPs have become the focus of research because of their high biocompatibility. Their physical and chemical properties(including size, surface charge, and shape) can affect their metabolism behavior and tumor accumulation, thereby resulting in different sensitizing effect of radiotherapy. This review will summarize the progress of recent research on GNPs as a radiosensitizer.

参考文献/References:

[1] Haume K, Rosa S, Grellet S, et al. Gold nanoparticles for cancer radiotherapy:a review[J]. Cancer Nanotechnol, 2016, 7(1):8. DOI:10.1186/s12645-016-0021-x.
[2] 吴周雪, 何芬. 纳米材料放疗增敏研究进展[J]. 解剖学研究, 2015, 37(3):228-231. Wu ZX, He F. Progress in radiation sensitization of nanomaterials[J].Anat Res, 2015, 37(3):228-231.
[3] Song G, Cheng L, Chao Y, et al. Emerging nanotechnology and advanced materials for cancer radiation therapy[J/OL]. Adv Mater, 2017, 29(32):1700996.[2017-12-10]https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.201700996. DOI:10.1002/adma.2017-00996.
[4] 王祯祯, 高光凯. 高压氧对迟发性放射损伤的作用[J]. 国际放射医学核医学杂志, 2017, 41(1):63-67. DOI:10.3760/cma.j.issn.1673-4114.2017.01.012. Wang ZZ, Gao GK. Hyperbaric oxygen therapy for delayed radiation injuries[J]. Int J Radiat Med Nucl Med, 2017, 41(1):63-67.
[5] Langenbacher M, Abdel-Jalil RJ, Voelter W, et al. In vitro hypoxic cytotoxicity and hypoxic radiosensitization. Efficacy of the novel 2-nitroimidazole N,N,N-tris[2-(2-nitro-1H-imidazol-1-yl)ethyl]amine[J]. Strahlenther Onkol, 2013, 189(3):246-254. DOI:10.1007/s00066-012-0273-2.
[6] Muguruma M, Yamazaki M, Okamura M, et al. Molecular mechanism on the testicular toxicity of 1,3-dinitrobenzene in Sprague-Dawley rats: preliminary study[J]. Arch Toxicol, 2005, 79(12):729-736. DOI:10.1007/s00204-005-0006-8.
[7] 蔡芸, 陈志龙, 赵芳,等. 硝基咪唑类抗肿瘤放射增敏剂研究进展[J]. 中国新药杂志, 2003, 12(4):249-253. DOI:10.3321/j.issn:1003-3734.2003.04.004. Cai Y, Chen ZL, Zhao F, et al. Research progress on nitroimidazole antitumor radiosensitizer[J]. Chin J New Drugs, 2003, 12(4):249-253.
[8] Calugaru V, Magné N, Hérault J, et al. Nanoparticles and radiation therapy[J]. Bull Cancer, 2015, 102(1):83-91. DOI:10.1016/j.bulcan.2014.10.002.
[9] Matsumoto Y, Nichols JW, Toh K, et al. Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery[J]. Nat Nanotechnol, 2016, 11(6):533-538. DOI:10.1038/nnano.2015.342.
[10] Hainfeld JF, Lin L, Slatkin DN, et al. Gold nanoparticle hyperthermia reduces radiotherapy dose[J]. Nanomedicine, 2014, 10(8):1609-1617. DOI:10.1016/j.nano.2014.05.006.
[11] Yang YS, Carney RP, Stellacci F, et al. Enhancing radiotherapy by lipid nanocapsule-mediated delivery of amphiphilic gold nanoparticles to intracellular membranes[J]. ACS Nano, 2014, 8(9):8992-9002. DOI:10.1021/nn502146r.
[12] Jeremic B, Aguerri AR, Filipovic N. Radiosensitization by gold nanoparticles[J]. Clin Transl Oncol, 2013, 15(8):593-601. DOI:10.1007/s12094-013-1003-7.
[13] Dou Y, Guo Y, Li X, et al. Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy[J]. ACS Nano, 2016, 10(2):2536-2548. DOI:10.1021/acsnano.5b07473.
[14] Cabral H, Matsumoto Y, Mizuno K, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size[J]. Nat Nanotechnol, 2011, 6(12):815-823. DOI:10.1038/nnano.2011.166.
[15] Gao B, Shen L, He KW, et al. GNRs@SiO2-FA in combination with radiotherapy induces the apoptosis of HepG2 cells by modulating the expression of apoptosis-related proteins[J]. Int J Mol Med, 2015, 36(5):1282-1290. DOI:10.3892/ijmm.2015.2358.
[16] Chang Y, He L, Li Z, et al. Designing core-shell gold and selenium nanocomposites for cancer radiochemotherapy[J]. ACS Nano, 2017, 11(5):4848-4858. DOI:10.1021/acsnano.7b01346.
[17] Ma N, Wu FG, Zhang X, et al. Shape-dependent radiosensitization effect of gold nanostructures in cancer radiotherapy:comparison of gold nanoparticles, nanospikes, and nanorods[J]. ACS Appl Mater Interfaces, 2017, 9(15):13037-13048. DOI:10.1021/acsami.7b01112.
[18] Zhang P, Qiao Y, Wang C, et al. Enhanced radiation therapy with internalized polyelectrolyte modified nanoparticles[J]. Nanoscale, 2014, 6(17):10095-10099. DOI:10.1039/c4nr01564a.
[19] Song L, Falzone N, Vallis KA. EGF-coated gold nanoparticles provide an efficient nano-scale delivery system for the molecular radiotherapy of EGFR-positive cancer[J]. Int J Radiat Biol, 2016, 92(11):716-723. DOI:10.3109/09553002.2016.1145360.
[20] Miura Y, Takenaka T, Toh K, et al. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood-brain tumor barrier[J]. ACS Nano, 2013, 7(10):8583-8592. DOI:10.1021/nn402662d.
[21] Yang CJ, Chithrani DB. Nuclear targeting of gold nanoparticles for improved therapeutics[J]. Curr Top Med Chem, 2016,16(3):271-280.
[22] Liu X, Chen Y, Li H, et al. Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior[J]. ACS Nano, 2013, 7(7):6244-6257. DOI:10.1021/nn402201w.
[23] Su N, Dang Y, Liang G, et al. Iodine-125-labeled cRGD-gold nanoparticles as tumor-targeted radiosensitizer and imaging agent[J]. Nanoscale Res Lett, 2015, 10:160. DOI:10.1186/s11671-015-0864-9.
[24] Buckway B, Frazier N, Gormley AJ, et al. Gold nanorod-mediated hyperthermia enhances the efficacy of HPMA copolymer-90Y conjugates in treatment of prostate tumors[J]. Nucl Med Biol, 2014, 41(3):282-289. DOI:10.1016/j.nucmedbio.2013.12.002.
[25] Zhang L, Chen H, Wang L, et al. Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy[J]. Nanotechnol Sci Appl, 2010, 3:159-170. DOI:10.2147/NSA.S7462.

相似文献/References:

[1]陈婕,张晓东,吴迪,等.巯基-聚乙二醇修饰的不同尺寸金纳米颗粒的制备和光学特性[J].国际放射医学核医学杂志,2013,37(1):16.[doi:10.3760/cma.j.issn.1673-4114.2013.01.005]
 Chen Jie,Zhang Xiao-dong,Wu Di,et al.The fabrication and option characteristics of polyethylene glycol-coated gold nanoparticles with different size[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(3):16.[doi:10.3760/cma.j.issn.1673-4114.2013.01.005]
[2]尹伟,刘日,王敏杰,等.金纳米棒作为新型CT对比剂的体外CT成像探索[J].国际放射医学核医学杂志,2018,(5):430.[doi:10.3760/cma.j.issn.1673-4114.2018.05.008]
 Yin Wei,Liu Ri,Wang Minjie,et al.In vitro CT imaging of gold nanorods as novel CT contrast agents[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(3):430.[doi:10.3760/cma.j.issn.1673-4114.2018.05.008]

备注/Memo

备注/Memo:
收稿日期:2017-12-14。
基金项目:中国医学科学院医学与健康科技创新工程项目(2016-I2M-3-022);协和青年基金资助和中央高校基本科研业务费专项资金资助(3332015100)
通讯作者:董辉,Email:donghui@irm-cams.ac.cn
更新日期/Last Update: 2018-05-25