[1]李航,姜勉,樊赛军.MiR-148a对肺癌细胞放射敏感性的影响[J].国际放射医学核医学杂志,2018,(3):248-256.[doi:10.3760/cma.j.issn.1673-4114.2018.03.010]
 Li Hang,Jiang Mian,Fan Saijun.Effect of miR-148a on the radiosensitivity of lung cancer cells[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(3):248-256.[doi:10.3760/cma.j.issn.1673-4114.2018.03.010]
点击复制

MiR-148a对肺癌细胞放射敏感性的影响(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
期数:
2018年第3期
页码:
248-256
栏目:
基础研究
出版日期:
2018-05-25

文章信息/Info

Title:
Effect of miR-148a on the radiosensitivity of lung cancer cells
作者:
李航 姜勉 樊赛军
300192 天津, 中国医学科学院北京协和医学院放射医学研究所, 天津市放射医学与分子核医学重点实验室
Author(s):
Li Hang Jiang Mian Fan Saijun
Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300192, China
关键词:
肺肿瘤辐射耐受性MiRNA-148a雌激素受体细胞增殖
Keywords:
Lung neoplasmsRadiation toleranceMiRNA-148aEstrogen receptorCell proliferation
DOI:
10.3760/cma.j.issn.1673-4114.2018.03.010
摘要:
目的 探讨miR-148a对肺癌A549、H460以及H1299细胞放射敏感性的影响。方法 根据不同的处理方法,分别按以下方式将肺癌A549、H460和H1299细胞进行分组。(1)将肺癌A549和H460细胞分为3组:空白对照组、4 Gy γ射线照射组和8 Gy γ射线照射组。采用实时定量PCR检测miR-148a的表达水平;(2)将肺癌A549细胞分为2组:空白对照组、miR-148a转染组;同时,将肺癌H460细胞分为2组:空白对照组、anti-miR-148a转染组。分别对转染2组细胞进行不同剂量的γ射线照射,并采用克隆形成实验方法来检测细胞增殖;(3)将肺癌A549和H1299细胞分为3组:空白对照组、miR-148a单独处理组、miR-148a和雌激素受体(ER)共转染组。分别对3组细胞进行不同剂量的γ射线照射,并采用克隆形成实验方法检测细胞生长情况。采用Student t-test对数据进行统计学分析,P<0.05表示差异有统计学意义。结果 实时定量PCR实验结果显示,γ射线照射能够显著下调肺癌A549和H460细胞中miR-148a的表达水平。克隆形成实验结果显示,与空白对照组相比,miR-148a转染能够显著增强肺癌A549细胞的放射敏感性,差异有统计学意义(t=12.16,P<0.01),而anti-miR-148a转染能够显著降低肺癌H460细胞的放射敏感性,差异有统计学意义(t=11.93,P<0.01)。同时,miR-148a过表达可以明显下调肺癌A549细胞中ER的mRNA及蛋白表达水平;而anti-miR-148a能够显著上调肺癌H460细胞中ER的mRNA及蛋白表达水平。另外,与miR-148a单独处理组相比,miR-148a和ER共转染组中miR-148a对肺癌A549和H1299细胞增殖的影响显著降低,差异有统计学意义(t=11.34、12.68,均P<0.01)。结论 照射可以诱导miR-148a的表达水平降低,人为过表达miR-148a能够抑制ER的蛋白表达水平,进而降低肺癌A549和H1299细胞的增殖能力,同时增强其放射敏感性。
Abstract:
Objective To explore the effects of miR-148a on the radiosensitivity of lung cancer cell lines A549, H460, and H1299. Methods Lung cancer cells were divided into various groups based on different treatment methods. (1) A549 and H460 cells were classified into three groups:control, 4 Gy γ-irradiation, and 8 Gy γ-irradiation groups. miR-148a expression levels were analyzed through qRT-PCR. (2) A549 cells were categorized into two groups:control and miR-148a transfection groups. H460 cells were also divided into two groups:control and anti-miR-148a transfection groups. The cells were treated with different doses of γ-irradiation, and cell proliferation was detected through a clonogenic assay. (3) A549 and H1299 cells were grouped into three:control, miR-148a transfection, and miR-148a+ER transfection groups. The cells were treated with different doses of γ-irradiation, and the proliferation of A549 and H1299 cells was detected via clonogenic assay. Statistical significance was determined with SPSS and analyzed with Student t test. P<0.05 was considered statistically significant. Results qRT-PCR analysis revealed that the miR-148a expression in the A549 and H460 cells treated with γ-irradiation decreased significantly. Clonogenic assays showed that miR-148a could sensitize A549 cells exposed to irradiation compared with that of the control group (t=12.16, P<0.01). H460 cells were more resistant to irradiation in the presence of anti-miR-148a (t=11.93, P<0.01). miR-148a overexpression could also downregulate the mRNA and protein levels of estrogen receptor (ER) in A549 cells, but anti-miR-148a could increase the mRNA and protein levels of ER in H460 cells. The miR-148a and ER overexpression significantly decreased the effect of miR-148a on the proliferation of A549 and H1299 cells (t=11.34, 12.68, respectively, both P<0.01). Conclusions Irradiation could decrease miR-148a expression levels, and miR-148a overexpression could downregulate the ER level and suppress the proliferation of A549 and H1299 cells, thereby enhancing the radiosensitivity of lung cancer cells.

参考文献/References:

[1] Yang H, Li S, Sun L, et al. Effects of the Ambient Fine Particulate Matter on Public Awareness of Lung Cancer Risk in China:Evidence from the Internet-Based Big Aata Platform[J/OL]. JMIR Public Health Surveill, 2017, 3(4):e64[2018-03-26]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5645640/.DOI:10.2196/public health.8078.
[2] Shi Y, Sun Y, Yu J, et al. China experts consensus on the diagnosis and treatment of advanced stage primary lung cancer(2016 version)[J]. Asia Pac J Clin Oncol, 2017, 13(1):87-103. DOI:10.1111/ajco.12608.
[3] Osarogiagbon R, Smeltzer M, Faris N. ORAL02.05:Understanding internal differences in N-Category-Stratified non-small cell lung cancer (NSCLC) survival:topic:surgery[J]. J Thorac Oncol, 2016, 11(11S):S255. DOI:10.1016/j.jtho.2016.09.014.
[4] JYY W, Bassig BA, Seow WJ, et al. Lung cancer risk in welders and foundry workers with a history of heavy smoking in the USA:The National Lung Screening Trial[J]. Occup Environ Med, 2017, 74(6):440-448. DOI:10.1136/oemed-2016-104168.
[5] Malinovsky G, Yarmoshenko I, Zhukovsky M. Radon, smoking and HPV as lung cancer risk factors in ecological studies[J]. Int J Radiat Biol, 2018, 94(1):62-69. DOI:10.1080/09553002.2018.1399225.
[6] Hart JE. Air pollution affects lung cancer survival[J]. Thorax, 2016, 71(10):875-876. DOI:10.1136/thoraxjnl-2016-208967.
[7] Salem A, Mistry H, Backen A, et al. Cell death, inflammation, tumor burden, and proliferation blood biomarkers predict lung cancer radiotherapy response and correlate with tumor volume and proliferation imaging[J/OL]. Clin Lung Cancer, 2018, 19(3):239-248. e7[2018-03-26]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5927801. DOI:10.1016/j.cllc.2017.12.002.
[8] Borghetti P, Bonù ML, Roca E, et al. Radiotherapy and tyrosine kinase inhibitors in stage IV non-small cell lung cancer:real-life experience[J]. In Vivo, 2018, 32(1):159-164. DOI:10.21873/invivo.11219.
[9] Klein C, Dokic I, Mairani A, et al. Overcoming hypoxia-induced tumor radioresistance in non-small cell lung cancer by targeting DNA-dependent protein kinase in combination with carbon ion irradiation[J]. Radiat Oncol, 2017, 12(1):208. DOI:10.1186/s13014-017-0939-0.
[10] Son B, Jun SY, Seo H, et al. Inhibitory effect of traditional oriental medicine-derived monoamine oxidase B inhibitor on radioresistance of non-small cell lung cancer[J/OL]. Sci Rep, 2016, 6:21986[2018-03-26]. https://www.nature.com/articles/srep21986. DOI:10.1038/srep21986.
[11] Luo H, Liang C. MicroRNA-148b inhibits proliferation and the epithelial-mesenchymal transition and increases radiosensitivity in non-small cell lung carcinomas by regulating ROCK1[J]. Exp Ther Med, 2018, 15(4):3609-3616. DOI:10.3892/etm.2018.5845.
[12] Wu SJ, Chen J, Wu B, et al. MicroRNA-150 enhances radiosensitivity by inhibiting the AKT pathway in NK/T cell lymphoma[J]. J Exp Clin Cancer Res, 2018, 37(1):18. DOI:10.1186/s13046-017-0639-5.
[13] Ajdarkosh H, Dadpay M, Yahaghi E, et al. Decrease expression and clinicopathological significance of miR-148a with poor survival in hepatocellular carcinoma tissues[J]. Diagn Pathol, 2015, 10:135. DOI:10.1186/s13000-015-0371-4.
[14] Gong L, Wang C, Gao Y, et al. Decreased expression of microRNA-148a predicts poor prognosis in ovarian cancer and associates with tumor growth and metastasis[J]. Biomed Pharmacother, 2016, 83:58-63. DOI:10.1016/j.biopha.2016.05.049.
[15] Yang JS, Li BJ, Lu HW, et al. Serum miR-152, miR-148a, miR-148b, and miR-21 as novel biomarkers in non-small cell lung cancer screening[J]. Tumour Biol, 2015, 36(4):3035-3042. DOI:10.1007/s13277-014-2938-1.
[16] Li J, Yu T, Cao J, et al. MicroRNA-148a suppresses invasion and metastasis of human non-small-cell lung cancer[J]. Cell Physiol Biochem, 2015, 37(5):1847-1856. DOI:10.1159/000438546.
[17] Ma F, Feng Y, Li W, et al. miR-148a Suppresses estrogen-induced viability and migration of breast cancer cells via inhibition of estrogen receptor α expression[J]. Exp Ther Med, 2017, 13(5):2515-2522. DOI:10.3892/etm.2017.4255.
[18] Rahal Z, El NS, Sinjab A, et al. Smoking and lung cancer:A geo-regional perspective[J]. Front Oncol, 2017, 7:194. DOI:10.3389/fonc.2017.00194.
[19] 董佳丽, 罗丹, 李源, 等. 降低B7-H3蛋白对受照肺癌细胞A549细胞周期和凋亡的影响[J]. 国际放射医学核医学杂志, 2017, 41(3):193-198. DOI:10.3760/cma.j.issn.1673-4114.2017.03.007. Dong JL, Luo D, Li Y, et al. Study on the effects of B7-H3 down-regulation on cell cycle and apoptosis of lung cancer A549 cells[J]. Int J Radiat Med Nucl Med, 2017, 41(3):193-198.
[20] Kang J, Kim W, Kwon T, et al. Plasminogen activator inhibitor-1 enhances radioresistance and aggressiveness of non-small cell lung cancer cells[J]. Oncotarget, 2016, 7(17):23961-23974. DOI:10.18632/oncotarget.8208.
[21] Chen Y, Min L, Z hang X, et al. Decreased miRNA-148a is associated with lymph node metastasis and poor clinical outcomes and functions as a suppressor of tumor metastasis in non-small cell lung cancer[J]. Oncol Rep, 2013, 30(4):1832-1840. DOI:10.3892/or.2013.2611.
[22] Onitsuka T, Uramoto H, Tanaka F. Lack of direct association between EGFR mutations and ER beta expression in lung cancer[J]. Anticancer Res, 2011, 31(3):855-860.
[23] Shi S, Tan P, Yan B, et al. ER stress and autophagy are involved in the apoptosis induced by cisplatin in human lung cancer cells[J]. Oncol Rep, 2016, 35(5):2606-2614. DOI:10.3892/or.2016.4680.
[24] Qiu C, Zhang T, Zhang W, et al. Licochalcone a inhibits he proliferation of human lung cancer cell lines A549 and H460 by inducing G2/M cell cycle arrest and ER stress[J/OL]. Int J Mol Sci, 2017, 18(8):E1761[2018-03-26]. http://www.mdpi.com/1422-0067/18/8/1761. DOI:10.3390/ijms18081761.
[25] Xie WY, Zhou XD, Yang J, et al. Inhibition of autophagy enhances heat-induced apoptosis in human non-small cell lung cancer cells through ER stress pathways[J]. Arch Biochem Biophys, 2016, 607:55-66. DOI:10.1016/j.abb.2016.08.016.
[26] Chen X, Ma N, Zhou Z, et al. Estrogen receptor mediates the radiosensitivity of triple-negative breast cancer cells[J]. Med Sci Monit, 2017, 23:2674-2683.

相似文献/References:

[1]麦卫平,张永林.能谱CT成像在肺癌诊断中的应用研究进展[J].国际放射医学核医学杂志,2016,40(1):77.[doi:10.3760/cma.j.issn.1673-4114.2016.01.015]
 Mai Weiping,Zhang Yonglin.Research progress of spectral imaging in the diagnosis of lung cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):77.[doi:10.3760/cma.j.issn.1673-4114.2016.01.015]
[2]刘佳,高刚,朴春南,等.调节肿瘤放射敏感性的miRNAs研究进展[J].国际放射医学核医学杂志,2016,40(2):159.[doi:10.3760/cma.j.issn.1673-4114.2016.02.015]
 Liu Jia,Gao Gang,Piao Chunnan,et al.Progress of microRNAs in regulating tumor radiation sensitivity[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):159.[doi:10.3760/cma.j.issn.1673-4114.2016.02.015]
[3]陈晓艳,张江虹,邵春林.STAT3与辐射敏感相关性的研究进展[J].国际放射医学核医学杂志,2016,40(3):191.[doi:10.3760/cma.j.issn.1673-4114.2016.03.007]
 Chen Xiaoyan,Jianghong,Shao Chunlin.Research progresses of correlation between STAT3 and radiosensitivity[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):191.[doi:10.3760/cma.j.issn.1673-4114.2016.03.007]
[4]霍小东,王慧星,阎卫亮,等.血管内皮抑制素对125I近距离照射裸鼠肺癌移植瘤的增敏效应研究[J].国际放射医学核医学杂志,2016,40(5):357.[doi:10.3760/cma.j.issn.1673-4114.2016.05.006]
 Huo Xiaodong,Wang Huixing,Yan Weiliang,et al.Sensitization effect of endostatin for 125I brachytherapy on transplanted tumor in nude mice[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):357.[doi:10.3760/cma.j.issn.1673-4114.2016.05.006]
[5]张艳兰,孙琦婷,武萍,等.呼吸门控PET/CT对于肺癌放疗靶区勾画的指导[J].国际放射医学核医学杂志,2015,39(2):105.[doi:10.3760/cma.j.issn.1673-4114.2015.02.001]
 Zhang Yanlan,Sun Qiting,Wu Ping,et al.Guiding the target delineation in radiation therapy of lung cancer by respiratory gated PET/CT[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):105.[doi:10.3760/cma.j.issn.1673-4114.2015.02.001]
[6]张高潮,马丽,寇莹,等.99Tcm-tetrofosmin SPECT诊断肺部肿瘤的临床价值[J].国际放射医学核医学杂志,2015,39(4):303.[doi:10.3760/cma.j.issn.1673-4114.2015.04.007]
 Zhang Gaochao,Ma Li,Kou Ying,et al.Clinical value of 99Tcm-tetrofosmin SPECT in the diagnosis of lung neoplasms[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):303.[doi:10.3760/cma.j.issn.1673-4114.2015.04.007]
[7]付畅,史大鹏,徐俊玲,等.不同组织学类型肺癌患者大脑静息葡萄糖代谢改变研究[J].国际放射医学核医学杂志,2014,38(2):75.[doi:10.3760/cma.j.issn.1673-4114.2014.02.002]
 Fu Chang,Shi Dapeng,Xu Junling,et al.The preliminary study of brain glucose metabolism changes in patients with lung cancer of different histological types[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(3):75.[doi:10.3760/cma.j.issn.1673-4114.2014.02.002]
[8]张俊涛.晚期肺癌125I粒子植入治疗近期疗效观察[J].国际放射医学核医学杂志,2014,38(2):94.[doi:10.3760/cma.j.issn.1673-4114.2014.02.006]
 Zhang Juntao.Short-term efficacy of 125I seeds implantation in the treatment of advanced lung cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(3):94.[doi:10.3760/cma.j.issn.1673-4114.2014.02.006]
[9]杨心蕊,卫华,郝新忠,等.过敏性肺炎伴左肺动脉栓塞18F-FDGPET/CT误诊肺癌一例[J].国际放射医学核医学杂志,2014,38(2):135.[doi:10.3760/cma.j.issn.1673-4114.2014.02.014]
[10]王芹,杜利清,徐畅,等.白细胞介素21基因联合放射对肺癌细胞生长的协同抑制作用[J].国际放射医学核医学杂志,2014,38(3):161.[doi:10.3760/cma.j.issn.1673-4114.2014.02.005]
 Wang Qin,Du Liqing,Xu Chang,et al.Synergism inhibition effect of adenovirus-mediated IL-21 gene combined with ionizing radiation on the growth of pulmonary carcinoma cells[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(3):161.[doi:10.3760/cma.j.issn.1673-4114.2014.02.005]
[11]孙晓辉,孔阳阳,路倩颖,等.肺癌细胞A549和H460对137Cs γ射线辐射敏感性差异的研究[J].国际放射医学核医学杂志,2018,(4):346.[doi:10.3760/cma.j.issn.1673-4114.2018.04.011]
 Sun Xiaohui,Kong Yangyang,Lu Qianying,et al.Difference of radiosensitivity for 137Cs γ-radiation between A549 and H460 lung cancer cell lines[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(3):346.[doi:10.3760/cma.j.issn.1673-4114.2018.04.011]

备注/Memo

备注/Memo:
收稿日期:2018-03-27。
基金项目:科技部科研院所开发专项(2014EG150134);天津市科技支撑项目(14ZCZDSY00001);中国医学科学院医学与健康科技创新工程(2017-I2M-3-019)
通讯作者:樊赛军,Email:fansaijun@irm-cams.ac.cn
更新日期/Last Update: 2018-05-25