[1]Yingding Xu,Gang Ren,Shibo Qi,等.Profiling EGFR in Triple Negative Breast Tumor Using Affibody PET Imaging[J].国际放射医学核医学杂志,2016,40(5):329-337.[doi:10.3760/cma.j.issn.1673-4114.2016.05.002]
 Yingding Xu,Gang Ren,Shibo Qi,et al.Profiling EGFR in Triple Negative Breast Tumor Using Affibody PET Imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):329-337.[doi:10.3760/cma.j.issn.1673-4114.2016.05.002]
点击复制

Profiling EGFR in Triple Negative Breast Tumor Using Affibody PET Imaging(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
40
期数:
2016年第5期
页码:
329-337
栏目:
论著
出版日期:
2016-09-25

文章信息/Info

Title:
Profiling EGFR in Triple Negative Breast Tumor Using Affibody PET Imaging
作者:
Yingding Xu Gang Ren Shibo Qi Zhen Cheng
Molecular Imaging Program at Stanford(MIPS), Department of Radiology and Bio-X Program, Stanford University, California, 94305-5344
Author(s):
Yingding Xu Gang Ren Shibo Qi Zhen Cheng
Molecular Imaging Program at Stanford(MIPS), Department of Radiology and Bio-X Program, Stanford University, California, 94305-5344
关键词:
AffibodyEpidermal grown factor receptorPositron-emission tomographyTriple negative breast heoplasmsCopper radioisotopes
Keywords:
AffibodyEpidermal grown factor receptorPositron-emission tomographyTriple negative breast heoplasmsCopper radioisotopes
DOI:
10.3760/cma.j.issn.1673-4114.2016.05.002
摘要:
Objective Triple negative breast cancer(TNBC) represents a group of refractory breast cancers with aggressive clinical manifestations as well as poor prognoses. Human epidermal growth factor receptor(EGFR) expression is strongly associated with TNBC progression and it may serve as a therapeutic target for TNBC. We aimed to evaluate EGFR affibody-based PET imaging to profile EGFR expression in small animal models. Methods 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid(DOTA) conjugated Ac-Cys-ZEGFR:1907 was chemically synthesized using solid phase peptide synthesizer and then radiolabeled with 64Cu. The in vitro cell uptake study was performed using SUM159 and MCF7 cells. The biodistribution and small animal PET imaging using 64Cu-DOTA-ZEGFR:1907 were further carried out with nude mice bearing subcutaneous MDA-MB-231 and SUM159 tumors. Results DOTA-Ac-Cys-ZEGFR:1907 was successfully synthesized and radiolabeled with 64Cu. Biodistribution study showed that tumor uptake value of 64Cu-DOTA-Ac-Cys-ZEGFR:1907 remained at(4.07±0.93)%ID/g at 24 h in nude mice(n=4) bearing SUM159 xenografts. Furthermore, small animal PET imaging study clearly showed that 64Cu-DOTA-Ac-Cys-ZEGFR:1907 specifically delineated the EGFR positive TNBC tumors at 4 h or later. Conclusion The study demonstrates that 64Cu-DOTA-Ac-Cys-ZEGFR:1907 is a promising molecular probe for PET imaging of EGFR positive TNBC. EGFR based small protein scaffold holds great promise as a novel platform that can be used for EGFR profiling of TNBC.
Abstract:
Objective Triple negative breast cancer(TNBC) represents a group of refractory breast cancers with aggressive clinical manifestations as well as poor prognoses. Human epidermal growth factor receptor(EGFR) expression is strongly associated with TNBC progression and it may serve as a therapeutic target for TNBC. We aimed to evaluate EGFR affibody-based PET imaging to profile EGFR expression in small animal models. Methods 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid(DOTA) conjugated Ac-Cys-ZEGFR:1907 was chemically synthesized using solid phase peptide synthesizer and then radiolabeled with 64Cu. The in vitro cell uptake study was performed using SUM159 and MCF7 cells. The biodistribution and small animal PET imaging using 64Cu-DOTA-ZEGFR:1907 were further carried out with nude mice bearing subcutaneous MDA-MB-231 and SUM159 tumors. Results DOTA-Ac-Cys-ZEGFR:1907 was successfully synthesized and radiolabeled with 64Cu. Biodistribution study showed that tumor uptake value of 64Cu-DOTA-Ac-Cys-ZEGFR:1907 remained at(4.07±0.93)%ID/g at 24 h in nude mice(n=4) bearing SUM159 xenografts. Furthermore, small animal PET imaging study clearly showed that 64Cu-DOTA-Ac-Cys-ZEGFR:1907 specifically delineated the EGFR positive TNBC tumors at 4 h or later. Conclusion The study demonstrates that 64Cu-DOTA-Ac-Cys-ZEGFR:1907 is a promising molecular probe for PET imaging of EGFR positive TNBC. EGFR based small protein scaffold holds great promise as a novel platform that can be used for EGFR profiling of TNBC.

参考文献/References:

[1] Jemal A, Siegel R, Xu J, et al.Cancer Statistics, 2010[J].CA Cancer J Clin, 2010,60(5):277-300.DOI:10.3322/caac.20073.
[2] Turner NC, Jones AL.Management of breast cancer-Part Ⅱ[J].BMJ, 2008, 337:a540.DOI:10.1136/bmj.a540.
[3] Turner NC, Jones AL.Management of breast cancer-part I[J].BMJ, 2008, 337:a421.DOI:10.1136/bmj.a421.
[4] Valabrega G, Montemurro F, Aglietta M.Trastuzumab:mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer[J].Ann Oncol, 2007, 18(6):977-984.DOI:10.1093/annonc/mdl475.
[5] Hatake K, Tokudome N, Ito Y.Next generation molecular targeted agents for breast cancer:focus on EGFR and VEGFR pathways[J].Breast Cancer, 2007, 14(2):132-149.
[6] Cameron DA, Stein S.Drug Insight:intracellular inhibitors of HER2-clinical development of lapatinib in breast cancer[J].Nat Clin Pract Oncol, 2008, 5(9):512-520.DOI:10.1038/ncponc1156.
[7] Nielsen TO, Hsu FD, Jensen K, et al.Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma[J].Clin Cancer Res, 2004, 10(16):5367-5374.DOI:10.1158/1078-0432.CCR-04-0220.
[8] Hynes NE, Lane HA.ERBB receptors and cancer:the complexity of targeted inhibitors[J].Nat Rev Cancer, 2005, 5(5):341-354.DOI:10.1038/nrc1609.
[9] Hynes NE, MacDonald G.ErbB receptors and signaling pathways in cancer[J].Curr Opin Cell Biol, 2009, 21(2):177-184.DOI:10.1016/j.ceb.2008.12.010.
[10] Corkery B, Crown J, Clynes M, et al.Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer[J].Ann Oncol, 2009, 20(5):862-867.DOI:10.1093/annonc/mdn710.
[11] Bosch A, Eroles P, Zaragoza R, et al.Triple-negative breast cancer:molecular features, pathogenesis, treatment and current lines of research[J].Cancer Treat Rev, 2010, 36(3):206-215.DOI:10.1016/j.ctrv.2009.12.002.
[12] Cheang MC, Voduc D, Bajdik C, et al.Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype[J].Clin Cancer Res, 2008,14(5):1368-1376.DOI:10.1158/1078-0432.CCR-07-1658.
[13] Tan DS, Marchió C, Jones RL, et al.Triple negative breast cancer:molecular profiling and prognostic impact in adjuvant anthracycline-treated patients[J].Breast Cancer Res Treat, 2008, 111(1):27-44.DOI:10.1007/s10549-007-9756-8.
[14] Cho EY, Choi YL, Han JJ, et al.Expression and amplification of Her2, EGFR and cyclin D1 in breast cancer:immunohistochemistry and chromogenic in situ hybridization[J].Pathol Int, 2008, 58(1):17-25.DOI:10.1111/j.1440-1827.2007.02183.x.
[15] Oliveras-Ferraros C, Vazquez-Martin A, López-Bonet E, et al.Growth and molecular interactions of the anti-EGFR antibody cetuximab and the DNA cross-linking agent cisplatin in gefitinib-resistant MDA-MB-468 cells:new prospects in the treatment of triple-negative/basal-like breast cancer[J].Int J Oncol, 2008, 33(6):1165-1176.DOI:10.3892/ijo_00000106
[16] Mishani E, Abourbeh G.Cancer molecular imaging:radionuclide-based biomarkers of the epidermal growth factor receptor(EGFR)[J].Curr Top Med Chem, 2007, 7(18):1755-1772.DOI:10.2174/156802607782507457.
[17] Wu AM, Olafsen T.Antibodies for molecular imaging of cancer[J].Cancer J, 2008,14(3):191-197.DOI:10.1097/PPO.0b013e31817b07ae.
[18] Nygren PA.Alternative binding proteins:affibody binding proteins developed from a small three-helix bundle scaffold[J].FEBS J, 2008, 275(11):2668-2676.DOI:10.1111/j.1742-4658.2008.06438.x.
[19] Nygren PA, Skerra A.Binding proteins from alternative scaffolds[J].J Immunol Methods, 2004, 290(1/2):3-28.DOI:10.1016/j.jim.2004.04.006.
[20] Tolmachev V, Orlova A, Nilsson FY, et al.Affibody molecules:potential for in vivo imaging of molecular targets for cancer therapy[J].Expert Opin Biol Ther, 2007, 7(4):555-568.DOI:10.1517/14712598.7.4.555.
[21] Orlova A, Feldwisch J, Abrahmsén L, et al.Update:affibody molecules for molecular imaging and therapy for cancer[J].Cancer Biother Radiopharm, 2007, 22(5):573-584.DOI:10.1089/cbr.2006.004-U.
[22] Wikman M, Steffen AC, Gunneriusson E, et al.Selection and characterization of HER2/neu-binding affibody ligands[J].Protein Eng Des Sel, 2004, 17(5):455-462.DOI:10.1093/protein/gzh053.
[23] Nilsson FY, Tolmachev V.Affibody molecules:new protein domains for molecular imaging and targeted tumor therapy[J].Curr Opin Drug Discov Devel, 2007, 10(2):167-175.
[24] Friedman M, Nordberg E, H?idén-Guthenberg I, et al.Phage display selection of Affibody molecules with specific binding to the extracellular domain of the epidermal growth factor receptor[J].Protein Eng Des Sel, 2007, 20(4):189-199.DOI:10.1093/protein/gzm011.
[25] Friedman M, Orlova A, Johansson E, et al.Directed evolution to low nanomolar affinity of a tumor-targeting epidermal growth factor receptor-binding affibody molecule[J].J Mol Biol, 2008, 376(5):1388-1402.DOI:10.1016/j.jmb.2007.12.060.
[26] Friedman M, St?hl S.Engineered affinity proteins for tumour-targeting applications[J].Biotechnol Appl Biochem, 2009, 53(Pt 1):1-29.DOI:10.1042/BA20080287.
[27] Yang M, Cheng K, Qi S, et al.Affibody modified and radiolabeled gold-iron oxide hetero-nanostructures for tumor PET, optical and MR imaging[J].Biomaterials, 2013, 34(11):2796-2806.DOI:10.1016/j.biomaterials.2013.01.014.
[28] Zhao P, Yang X, Qi S, et al.Molecular imaging of hepatocellular carcinoma xenografts with epidermal growth factor receptor targeted affibody probes[J/OL].Biomed Res Int, 2013:759057[2016-07-17].https://www.ncbi.nlm.nih.gov/pubmed/23710458.DOI:10.1155/2013/759057.
[29] Nordberg E, Ekerljung L, Sahlberg SH, et al.Effects of an EGFR-binding affibody molecule on intracellular signaling pathways[J].Int J Oncol, 2010, 36(4):967-972.DOI:10.3892/ijo_00000576.
[30] Miao Z, Ren G, Liu H, et al.Small-animal PET imaging of human epidermal growth factor receptor positive tumor with a 64Cu labeled affibody protein[J].Bioconjug Chem, 2010, 21(5):947-954.DOI:10.1021/bc900515p.
[31] Miao Z, Ren G, Liu H, et al.PET of EGFR expression with an 18F-labeled affibody molecule[J].J Nucl Med, 2012, 53(7):1110-1118.DOI:10.2967/jnumed.111.100842.
[32] Tolmachev V, Nilsson FY, Widstr?m C, et al.111In-benzyl-DTPA-ZHER2:342, an affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumors[J].J Nucl Med, 2006, 47(5):846-853.
[33] Tolmachev V, Orlova A, Pehrson R, et al.Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule[J].Cancer Res, 2007, 67(6):2773-2782.DOI:10.1158/0008-5472.CAN-06-1630.
[34] W?llberg H, Orlova A.Slow internalization of anti-HER2 synthetic affibody monomer 111In-DOTA-ZHER2:342-pep2:implications for development of labeled tracers[J].Cancer Biother Radiopharm, 2008, 23(4):435-442.DOI:10.1089/cbr.2008.0464.
[35] Ekblad T, Tran T, Orlova A, et al.Development and preclinical characterisation of 99mTc-labelled Affibody molecules with reduced renal uptake[J].Eur J Nucl Med Mol Imaging, 2008, 35(12):2245-2255.DOI:10.1007/s00259-008-0845-7.

备注/Memo

备注/Memo:
收稿日期:2016-07-18
基金项目:Office of Science(BER), U.S. Department of Energy(DE-SC0008397); California Breast Cancer Research Program(14IB-0091); National Cancer Institute Small Animal Imaging Resource Program Grant (R24 CA93862); In Vivo Cellular Molecular Imaging Center Grant (P50 CA114747, 5R01CA119053)
通讯作者:Cheng Z, Email:zcheng@stanford.edu
更新日期/Last Update: 1900-01-01