[1]蔡恬静,刘青杰.放射生物剂量学研究的新进展[J].国际放射医学核医学杂志,2015,39(4):316-323.[doi:10.3760/cma.j.issn.1673-4114.2015.04.010]
 Cai Tianjing,Liu Qingjie.Progress on the radiation biodosimetry study[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(4):316-323.[doi:10.3760/cma.j.issn.1673-4114.2015.04.010]
点击复制

放射生物剂量学研究的新进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
39
期数:
2015年第4期
页码:
316-323
栏目:
出版日期:
2015-07-25

文章信息/Info

Title:
Progress on the radiation biodosimetry study
作者:
蔡恬静 刘青杰
中国疾病预防控制中心辐射防护与核安全医学所, 辐射防护与核应急中国疾病预防控制中心重点实验室, 北京, 100088
Author(s):
Cai Tianjing Liu Qingjie
China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
关键词:
放射生物剂量学细胞遗传学快速高通量分析分子生物学
Keywords:
Radiation biodosimetryCytogeneticsFast high-throuputMolecular biology
DOI:
10.3760/cma.j.issn.1673-4114.2015.04.010
摘要:
放射生物剂量学方法在历次放射事故应急处置中起到非常重要的作用,主要采用非稳定性染色体畸变和微核分析。最近的研究关注快速高通量的生物剂量计的探索,不仅涉及上述方法的自动化,还涉及DNA双链断裂、基因表达等分子生物学剂量计的研究以及代谢组学和血清学指标的筛选。笔者主要就2012-2014年放射生物剂量学研究的新进展进行综述。
Abstract:
Radiation biodosimetry plays an important role in the medical treatment of each radiation accident,mainly by dicentric and cytokinesis-block micronucleus (CBMN) analyses.Biodosimetry studies focus on the rapid and high-throughput radiation biodosimeter.These studies include not only the automatic analyses of dicentric and CBMN,but also the molecular markers,such as DNA double-strand break and gene and protein expression.Metabolomic and serology analyses are also explored.The new progress in radiation biodosimetry over the past three years was reviewed in this paper.

参考文献/References:

[1] Swartz HM, Williams BB, Flood AB. Overview the principles and practice of biodosimetry[J]. Radiat Environ Biopys, 2014, 53(2):221-232.
[2] 王继先, 金璀珍, 白玉书, 等. 放射生物剂量学[M]. 北京:原子能出版社, 1997.
[3] 金璀珍. 放射生物剂量估计[M]. 北京:军事医学科学出版社, 2002.
[4] Ray FA, Zimmerman E, Robinson B, et al. Directional genomic hy-bridization for chromosomal inversion discovery and dectection[J]. Chromosome Res, 2013, 21(2):165-174.
[5] Ray FA, Robinson E, McKenna M, et al. Directional genomic hy-bridization:inversions as a potential biodosimeter for retrospective radiation exposure[J]. Radiat Environ Biophys, 2014, 53(2):255-263.
[6] Rogan PK, Li Y, Wickramasinghe A, et al. Automating dicentric chromosome detection from cytogenetic biodosimetry data[J]. Radiat Prot Dosimetry, 2014, 159(1-4):95-104.
[7] Gruel G, Gregoire E, Lecas S, et al. Biological dosimetry by auto-mated dicentric scoring in a stimulated emergency[J]. Radiat Res, 2013, 179(5):557-569.
[8] Beaton LA, Ferrarotto C, Kutzner BC, et al. Analysis of chromosome damage for biodosimetry using flow cytometry[J]. Mutat Res, 2013,756(1-2):192-195.
[9] De Amicis A, De Sanctis S, Di Cristofaro S, et al. Dose estimation using dicentric chromosome assay and cytokinesis block micronu-cleus assay:comparison between manual and automated scoring in triage mode[J]. Health Phys, 2014, 106(6):787-797.
[10] Romm H, Ainsbury E, Barnard S, et al. Automatic scoring of dicen-tric chromosome as a tool in large scale radiation accidents[J]. Mu-tat Res, 2013, 756(1-2):174-183.
[11] Romm H, Ainsbury E, Bajinskis A, et al. Web-based scoring of the dicentric assay, a collaborative biodosimetric scoring strategy for population triage in large scale radiation accidents[J]. Radiat Envi-ron Biophys, 2014, 53(2):241-254.
[12] Sugarman SL, Livingston GK, Stricklin DL, et al. The Internet’s role in a biodosimetric response to a radiation mass casualty event[J]. Health Phys, 2014, 106(5 Suppl):S65-70.
[13] Tucker JD, Vadapalli M, Joiner MC, et al. Estimating the lowest detectable dose of ionzing radiation by the cytokinesis-block mi-cronucleus assay[J]. Radiat Res 2013, 180(3):284-291.
[14] Baeyens A, Swanson R, Herd O, et al. A semi-automated micronu-cleus-centromere assay to assess low-dose radiation exposure in hu-man lymphocytes[J]. Int J Radiat Biol, 2011, 87(9):923-931.
[15] Rodrigues MA, Beaton-Green LA, Kutzner BC, et al. Multi-param-eter dose estimations in radiation biodosimetry using the automated cytokinesis-block micronucleus assay with imaging flow cytometry[J]. Cytometry A, 2014, 85(10):883-893.
[16] Francois M, Hochstenbach K, Leifert W, et al. Automation of the cytokinesis-block micronucleus cytome assay by laser scanning cy-tometry and its potential application in radiation biodosimetry[J]. Biotechniques, 2014, 57(6):309-312.
[17] Lyulko OV, Garty G, Randers-Pehrson G, et al. Fast image analysis for the micronucleus assay in a fully automated high-throuput bio-dosimetry systems[J]. Radiat Res, 2014, 181(2):146-161.
[18] De Sanctis S, De Amicis A, Di Cristofaro S, et al. Cytokinesis-block micronucleus assay by manual and automated scoring:calibration curves and dose prediction[J]. Health Phys, 2014, 106(6):745-749.
[19] Repin M, Turner HC, Garty G, et al. Next generation platforms for high-throughput biodosimetry[J]. Radiat Prot Dosimetry, 2014, 159(1):105-110.
[20] Fenech M. Cytokinesis-block micronucleus cytome assay[J]. Nat Protoc, 2007, 2(5):1084-1104.
[21] Fenech M. The lymphocyte cytokinesis-block micronucleus cytome assay and its application in radiation biodosimetry[J]. Health Phys, 2010, 98(2):234-243.
[22] Zhao H, Lu X, Li S, et al. Characteristics of nucleoplasmic bridges induced by 60Co γ-rays in human peripheral lymphocytes[J]. Muta-genesis, 2014, 29(1):49-54.
[23] Caradonna F. Nucleoplasmic bridges and acrocentric chromosome associations as early markers of exposure to low levels of ionising radiation in occupationally exposed hospital workers[J]. Mutagene-sis, 2015, 30(2):269-275.
[24] Romero I, Lamadrid AI, Gonzalez JE, et al. Shortening the culture time in cytogenetic dosimetry using PCC-R asay[J]. Radiat Prot Dosimetry, 2014, 2015, 163(4):424-429.
[25] Pathak R, Prasanna PG. Premature chromosome condensation in human resting peripheral blood lymphocytes without mitogen stimu-lation for chromosome aberration analysis using specific whole chromosome DNA hybridization probes[J]. Methods Mol Biol, 2014, 1105:171-181.
[26] Yao B, Li Y, Liu G, et al. Estimation of the biological dose received by five victims of a radiation accident using three different cytoge-netic tools[J]. Mutat Res, 2013, 751(1):66-72.
[27] Gonzalez JE, Romero I, Gregoire E, et al. Biodosimetry estimation using the ratio of the longest:shortest length in the premature chromosome condensation(PCC) method applying autocapture and automatic image analysis[J]. J Radiat Res, 2014, 55(5):862-865.
[28] 赵骅, 陆雪, 陈德清, 等. 早熟染色体凝聚最长染色体长宽比和最长与最短染色体长度比作为辐射损伤指标的研究[J]. 癌变·畸变·突变, 2011, 23(2):137-140.
[29] Miura T, Nakata A, Kasai K, et al. A novel parameter, cell-cycle progression index, for radiation dose absorbed estimation in the premature chromosome condensation assay[J]. Radiat Prot Dosime-try, 2014, 159(1-4):52-60.
[30] Liu QJ, Lu X, Zhao XT, et al. Assessment of retrospective dose es-timation, with fluorescence in situ hybridization(FISH), of six vic-tims previously exposed to accidental ionizing radiation[J]. Mutat Res, 2014, 759(1):1-8
[31] Wang Y, Xu C, Du LQ, et al. Evaluation of the comet assay for as-sessing the dose-response relationship of DNA damage induced by ionizing radiation[J]. Int J Mol Sci, 2013, 14(11):22449-22461.
[32] Turner HC, Sharma P, Perrier JR, et al. The RABiT:high-throuput technology for assessing global DSB repair[J]. Radiat Environ Bio-phys, 2014, 53(2):265-272.
[33] Lamkowski A, Forcheron F, Agay D, et al. DNA damage focus anal-ysis in blood samples of minipig reveals acute partial body irradia-tion[J/OL]. PLoS One, 2014, 9(2):e87458[2015-05-10]. http://www.ncbi.nlm.nih.gov/pubmed/24498326.
[34] Vandersickel V, Beukes P, Van Bockstaele B, et al. Induction and disappearance of γ-H2AX foci and formation of micronuclei after exposure of human lymphocytes to 60Co γ-rays and p (66)+Be(40) neutrons[J]. Int J Radiat Biol, 2014, 90(2):149-158.
[35] Zarybnicka L, Vavrova J, Havelek R, et al. Lymphocyte subsets and their H2AX phosphorylation in response to in vivo irradiation in rats[J]. Int J Radiat Biol, 2013, 89(2):110-117.
[36] Wang ZD, Hu HL, Hu M, et al. Ratio of γH2AX level in lympho-cytes to that in granulocytes detected using flow cytometry as a po-tential biodosimeter for radiation exposure[J]. Radiat Environ Biophys, 2014, 53(2):283-290.
[37] Moquet J, Barnard S, Rothkamm K, et al. Gamma-H2AX bodosime-96 well lyse/fix protocol with a routine method[J/OL]. Peer J, 2014, 2:e282[2015-05-10]. http://www.ncbi.nlm.nih.gov/pubmed/24688860.
[38] Barnard S, Ainsbury EA, Al-Hafidh J, et al. The first gamma-H2AX biodosimetry intercomparison exercise of the developing European biodosimetry network RENEB[J]. Radiat Prot Dosimetry, 2015, 164(3):265-270.
[39] Roy L, Gruel G, Vaurijoux A. Cell response to ionising radiation aralysed by gene expression patterns[J]. Ann 1st Super sarita, 2009, 49(3):272-277.
[40] Chauhan V, Howland M, Wilkins R. Identification of gene-based response in human blood cells exposed to alpha particle radiation[J]. BMC Genomics, 2014, 7:43.
[41] Tucker JD, Joiner MC, Thomas RA, et al. Accurate gene expres-sion-based biodosimetry using minimal set of human gene tran-scripts[J]. Int J Radiat Oncol Biol Phys, 2014, 88(4):933-939.
[42] Liu QJ, Zhang DQ, Zhang QZ, et al. Dose-effect of ionising radia-tion-induced PIG3 gene expression alteration in human lym-phoblastoid AHH-1 cells and human peripheral blood lymphocytes[J]. Int J Radiat Biol, 2015, 91(1):71-80.
[43] Forrester HB, Sprung CN. Intragenic controls utilizing radiation-in-duced alternative transcript regions improves gene expression bio-dosimetry[J]. Radiat Res, 2014, 181(3):314-323.
[44] Lucas J, Dressman HK, Suchindran S, et al. A translatable predic-tor of human radiation exposure[J/OL]. PLoS One, 2014, 9(9):e107897[2015-05-10]. http://www.ncbi.nlm.nih.gov/pubmed/25255453.
[45] Deperas-Kaminska M, Bajinskis A, Marczyk M, et al. Radiation-in-duced changes in levels of selected proteins in peripheral blood serum of breast cancer patients as a potential triage biodosimeter for large-scale radiological emergencies[J]. Health Phys, 2014, 107(6):555-563.
[46] Sharma M, Moulder JE. The urine proteome as a radiation bio-dosimeter[J]. Adv Exp Med Biol, 2013, 990:87-100.
[47] Johnson CH, Patterson AD, Krausz KW, et al. Radiationtry for use in large scale radiation incidents:comparison of rapid’ metabolomics. 5. Identification of urinary biomarkers of ionizing ra-diation exposure in nonhuman primates by mass spectrometry-based metabolomics[J]. Radiat Res, 2012, 178(4):328-340.
[48] Laiakis EC, Mak TD, Anizan S, et al. Development of a metabolom-ic radiation signature in urine from patients undergoing total body irradiation[J]. Radiat Res, 2014, 181(4):350-361.
[49] Zhang XH, Min XY, Wang AL, et al. Development of serum copper-based biological dosimetry in whole body gamma irradiation of mice[J]. Health Phys, 2013, 105(4):351-355.
[50] Min XY, Zhang XH, Zhou QP, et al. Development of serum zinc as a biological dosimeter in mice[J]. Int J Radiat Biol, 2014, 90(10):909-913.
[51] Zhang XH, Lou ZC, Wang AL, et al. Development of serum iron as a biological dosimeter in mice[J]. Radiat Res, 2013, 179(6):684-689.
[52] Trompier F, Romanyukha A, Reyes R, et al. State of the art in nail dosimetry:free radicals identification and reaction mechanisms[J]. Radiat Environ Biophys, 2014, 53(2):291-303.
[53] He X, Swarts SG, Demidenko E, et al. Development and validation of an ex vivo electron paramagentic resonance fingernail biodosi-metric method[J]. Radiat Prot Dosimetry, 2014, 159(4):172-181.
[54] Tepe Cam S, Polat M, Seyhan N. The use of human hair as bio-dosimeter[J]. Appl Radiat Isot, 2014, 94:272-281.
[55] Swartz HM, Flood AB, Williams BB, et al. Comparison of the needs for biodosimetry for large-scale radiation events for military versus civilian populations[J]. Health Phys, 2014, 106(6):755-763.
[56] Kulka U, Ainsbury L, Atkinson M, et al. Realising the European network of biodosimetry:RENEB-status quo[J]. Radiat Prot Dosime-try, 2015, 164(1-2):42-45.
[57] Rothkamm K, Beinke C, Romm H, et al. Comparison of established and emerging biodosimetry assays[J]. Radiat Res, 2013, 180(2):111-119.

相似文献/References:

[1]王继先.生物剂量学技术在放射流行病学中的应用[J].国际放射医学核医学杂志,1997,21(5):225.

备注/Memo

备注/Memo:
收稿日期:2015-05-11。
基金项目:国家自然科学基金(项目编号:30870749,81172593)
通讯作者:刘青杰,Email:qjliu@nirp.cn
更新日期/Last Update: 1900-01-01