[1]张晓东,宋莎莎,陈婕,等.15nm聚乙二醇保护的Au纳米颗粒对HepG2细胞的放射增敏作用[J].国际放射医学核医学杂志,2014,38(1):5-9.[doi:10.3760/cma.j.issn 1673-4114.2014.01.002]
 Zhang Xiaodong,Song Shasha,Chen Jie,et al.Radiosensitivity enhancement of typical 15 nm polyethylene-glycol-coated Au nanoparticles on HepG2 cell[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(1):5-9.[doi:10.3760/cma.j.issn 1673-4114.2014.01.002]
点击复制

15nm聚乙二醇保护的Au纳米颗粒对HepG2细胞的放射增敏作用(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
38
期数:
2014年第1期
页码:
5-9
栏目:
出版日期:
2014-01-25

文章信息/Info

Title:
Radiosensitivity enhancement of typical 15 nm polyethylene-glycol-coated Au nanoparticles on HepG2 cell
作者:
张晓东 宋莎莎 陈婕 吴迪 沈秀 孙元明 刘培勋
北京协和医学院中国医学科学院放射医学研究所天津市分子核医学重点实验室, 天津 300192
Author(s):
Zhang Xiaodong Song Shasha Chen Jie Wu Di Shen Xiu Sun Yuanming Liu Peixun
Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
关键词:
聚乙烯二醇类金纳米颗粒放射增敏
Keywords:
Polyethylene glycolsGold nanoparticlesRadiation sensitizing
DOI:
10.3760/cma.j.issn 1673-4114.2014.01.002
摘要:
目的 研究Au纳米颗粒对HepG2细胞的放射增敏作用。方法 首先制备典型的15nm聚乙二醇(PEG)包裹的Au纳米颗粒,然后使用紫外可见分光光度计实时定量检测纳米颗粒的血浆稳定性,同时使用噻唑蓝法研究给药后24h和48h的细胞活性,最后,通过克隆形成实验研究不同浓度的Au纳米颗粒对HepG2细胞的放射增敏作用。结果 PEG包裹的Au纳米颗粒具有较好的血浆稳定性,在24h及以后未见表面等离子共振吸收峰有明显的偏移。细胞活性实验表明,24h后,细胞的活性有所降低,但是48h后细胞的活性迅速恢复到90%。进一步研究克隆形成发现,Au纳米颗粒具有明显的放射增敏作用。结论 15nmPEG包裹的Au纳米颗粒具有较高的血浆稳定性、较低的细胞毒性和较好的放射增敏作用。
Abstract:
Objective To investigate the radiosensitivity enhancement of Au nanoparticles to HepG2 cell. Methods 15 nm polyethylene-glycol-coated (PEG)Au nanoparticles were synthesized, and then blood stability were tested by using the UV-vis optical absorption. Meanwhile, 3- (4, 5-dimethyhhia-zol-2-yl)-2, 5-diphenyhetrazolium bromide methods were used to investigate the cell viability after 24 and 48 hours treatments, and cloning formation were used to investigate the radiosensitivity enhancement. Results It was found that PEG-coated Au nanoparticles presented a high blood stability, and surface plasmon response has not shown significant changes after 24 hours. Cell viability was decreased after 24 hours treatment, but it was recovered to 90% after 48 hours. Cloning formation showed Au nanoparticles presented a significant radiosensitivity enhancement. Conclusion 15 nm PEG-coated An nanoparticles presented a good blood stability, low eytotoxieity and high radiosensitivity enhancement.

参考文献/References:

[1] Giljohann DA,Seferos DS,Daniel WL. Gold nanoparticles for biology and medicine[J].Angew Chem Int Ed Engl,2010,49(19):3280-3294.
[2] Eustis S,El-Sayed MA. Why gold nanoparticles are more precious than pretty gold:noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes[J].Chem Soc Rev,2006,35(3):209-217.
[3] 陈婕,张晓东,吴迪,等.巯基-聚乙二醇修饰的不同尺寸金纳米颗粒的制备和光学特性[J].国际放射医学核医学杂志,2013,37(1):16-19.
[4] Hu M,Chen J,Li ZY. Gold nanostructures:engineering their plasmonic properties for biomedical applications[J].Chem Soc Rev,2006,35(11):1084-1094.
[5] Wang S,Huang P,Nie L. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars[J].Adv Mater,2013,25(22):3055-3061.
[6] Luo Z,Yuan X,Yu Y,et al. From aggregation-induced emission of Au (Ⅰ)-thiolate complexes to ultrabright Au (0)@Au (Ⅰ)-thiolate core-shell nanoclusters[J].J Am Chem Soc,2012,134(40):16662-16670.
[7] Zhang XD,Wu D,Shen X,et al. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy[J].Biomaterials,2012,33(16):6408-6419.
[8] Day ES,Bickford LR,et al,Slater JH. Antibody-conjugated goldgold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer[J].Int J Nanomedicine,2010,5:445-454.
[9] Zhang XD,Chen J,Luo Z,et al. Enhanced tumor accumulation of sub-2 nm gold nanoclusters for cancer radiation therapy[J].Adv Healthc Mater,2014,3(1):131-141.
[10] Rahman WN,Bishara N,Ackerly T,et al. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy[J].Nanomedicine,2009,5(2):136-142.
[11] Hainfeld JF,Slatkin DN,Focella TM,et al. Gold nanoparticles:a new X-ray contrast agent[J].Br J Radiol,2006,79(939):248-253.
[12] Kim D,Park S,Lee JH,et al. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo Ⅹ-ray computed tomography imaging[J].J Am Chem Soc,2007,129(24):7661-7665.
[13] Tong L,Wei Q,Wei A,et al. Gold nanorods as contrast agents for biological imaging:optical properties,surface conjugation and photothermal effects[J].Photochem Photobiol,2009,85(1):21-32.
[14] Goodman CM,McCusker CD,Yilmaz T,et al. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains[J].Bioconjug Chem,2004,15(4):897-900.
[15] Hauck TS,Ghazani AA,Chan WC,et al. Assessing the effect of surface chemistry on gold nanorod uptake,toxicity,and gene expression in mammalian cells[J].SMALL,2008,4(1):153-159.
[16] Zhang XD,Wu D,Shen X,et al. In vivo renal clearance,biodistribution,toxicity of gold nanoclusters[J].BIOMATERIALS,2012,33(18):4628-4638.
[17] Pan Y,Neuss S,Leifert A,et al. Size-dependent cytotoxicity of gold nanoparticles[J].SMALL,2007,3(11):1941-1949.
[18] De Jong WH,Hagens WI,Krystek P,et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration[J].BIOMATERIALS,2008,29(12):1912-1919.
[19] Zhang XD,Wu D,Shen X,et al. Size-dependent in vivo toxicity of PEG-coated gold nanoparticles[J].Int J Nanomedicine,2011,6:2071-2081.
[20] Zhang G,Yang Z,Lu W,et al. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice[J].BIOMATERIALS,2009,30(10):1928-1936.
[21] Lipka J,Semmler-Behnke M,Sperling RA,et al. Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection[J].BIOMATERIALS,2010,31(25):6574-6581.
[22] Zhang XD,Wu HY,Wu D,et al. Toxicologic effects of gold nanoparticles in vivo by different administration routes[J].Int J Nanomedicine,2010,5:771-781.
[23] Xie J,Zheng Y,Ying JY,et al. Protein-directed synthesis of highly fluorescent gold nanoclusters[J].J Am Chem Soc,2009,131(3):888-889.
[24] Wu X,He X,Wang K,et al. Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo[J].Nanoscale,2010,2(10):2244-2249.
[25] Wu Z,Jin R,et al. On the ligand’s role in the fluorescence of gold nanoclusters[J].Nano Letters,2010,10(7):2568-2573.

相似文献/References:

[1]陈婕,张晓东,吴迪,等.巯基-聚乙二醇修饰的不同尺寸金纳米颗粒的制备和光学特性[J].国际放射医学核医学杂志,2013,37(1):16.[doi:10.3760/cma.j.issn.1673-4114.2013.01.005]
 Chen Jie,Zhang Xiao-dong,Wu Di,et al.The fabrication and option characteristics of polyethylene glycol-coated gold nanoparticles with different size[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(1):16.[doi:10.3760/cma.j.issn.1673-4114.2013.01.005]
[2]张晓东,陈婕,吴迪,等.金纳米颗粒修饰及其对肝癌细胞生长和辐射损伤的影响[J].国际放射医学核医学杂志,2014,38(3):157.[doi:10.3760/cma.j.issn.1673-4114.2014.03.004]
 Zhang Xiaodong,Chen Jie,Wu Di,et al.Effect of Au nanoparticles modified with sulfhydryl-polyethylene glycol on liver cancer cell proliferation and radiation damage[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(1):157.[doi:10.3760/cma.j.issn.1673-4114.2014.03.004]

备注/Memo

备注/Memo:
收稿日期:2013-07-25。
基金项目:国家自然科学基金(81000668);天津市自然科学基金(13JCQNJC13500);中国医学科学院放射医学研究所所基金(SF1207;SZ1336);北京协和医学院协和新星基金(人1256);北京协和医学院青年基金(院1343)
通讯作者:张晓东(Email:xiaodongzhang@irm-cams.ac.cn)
更新日期/Last Update: 1900-01-01