[1]陈婕,张晓东,吴迪,等.巯基-聚乙二醇修饰的不同尺寸金纳米颗粒的制备和光学特性[J].国际放射医学核医学杂志,2013,37(1):16-19.[doi:10.3760/cma.j.issn.1673-4114.2013.01.005]
 Chen Jie,Zhang Xiao-dong,Wu Di,et al.The fabrication and option characteristics of polyethylene glycol-coated gold nanoparticles with different size[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(1):16-19.[doi:10.3760/cma.j.issn.1673-4114.2013.01.005]
点击复制

巯基-聚乙二醇修饰的不同尺寸金纳米颗粒的制备和光学特性(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
37
期数:
2013年第1期
页码:
16-19
栏目:
论著
出版日期:
2013-01-25

文章信息/Info

Title:
The fabrication and option characteristics of polyethylene glycol-coated gold nanoparticles with different size
作者:
陈婕 张晓东 吴迪 宋莎莎 孙元明 刘培勋 丁艳秋 焦玲 冯鑫 樊飞跃
中国医学科学院放射医学研究所, 天津市分子核医学重点实验室, 天津, 300192
Author(s):
Chen Jie Zhang Xiao-dong Wu Di Song Sha-sha Sui Yuan-ming Liu Pei-xun Ding Yan-qiu Jiao Ling Feng Xin FAN Fei-yue
Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin 300192, China
关键词:
纳米结构聚乙烯二醇类显微镜检查电子透射
Keywords:
NanostructuresGoldPolyethylene glycolsMicroscopyelectrontransmission
DOI:
10.3760/cma.j.issn.1673-4114.2013.01.005
摘要:
目的 利用氯金酸和不同的还原剂(如柠檬酸三钠和硼氢化钠)制备不同尺寸的金纳米颗粒(GNPs),同时制备巯基-聚乙二醇(SH-PEG)修饰的PEG-GNPs.方法 将氯金酸溶液加热至沸腾,之后加入不同量的柠檬酸三钠或硼氢化钠溶液,搅拌30 min即可制备不同尺寸的GNPs。之后加入一定量的SH-PEG,搅拌1h,即可制备PEG-GNPs。利用紫外可见分光光度计和透射电子显微镜来观察GNPs和PEG-GNPs的光学特性和尺寸。结果 利用1%的柠檬酸三钠溶液可以制备10、25、45 nm的GNPs,而用0.11%的硼氢化钠溶液可以制备5 nm的GNPs。通过加入一定量的SH-PEG,可以制备PEG-GNPs。将不同尺寸的GNPs和PEG-GNPs的紫外可见吸收谱相比,发现随着GNPs尺寸的增加,表面等离子共振峰会向长波长方向移动。结论 通过调节氯金酸与柠檬酸三钠或硼氢化钠的比例,可以制备不同尺寸的GNPs。同时,颗粒尺寸越大,表面等离子共振峰红移的现象越明显。
Abstract:
Objective To synthesize gold nanoparticles (GNPs) and polyethylene glycol-coated GNPs (PEG-GNPs) modified by sulfhydryl-polyethylene glycol (SH-PEG),chloroauric acid and different reductant agent,such as trisodium citrate and sodium borohydride were used.Methods Chloroauric acid solution was brought to a boil,and then different volume of trisodium citrate solution or sodium borohydride solution was added to the boiling solution.Then the mixture was boiled for a further 30 minutes.Subsequently some SH-PEG was mixed with the GNPs and stirred for 1 hour to fabricate the PEG-GNPs.The optical characteristic and size of GNPs and PEG-GNPs were observed by UV-Vis spectrophotometer and transmission electron microscopic respectively.Results 10,25,and 45 nm GNPs were fabricated using 1% trisodium citrate,while the 5 nm GNPs were synthesized using 0.11% sodium borohydride.Meanwhile,SH-PEG was added to the GNPs and obtained the PEG-GNPs.Furthermore,when compared with the GNPs with different size,it can be found that the surface plasmon resonance (SPR) of GNPs have shift to long wavelength region with increasing particles size.The same phenomenon also can be found in the PEG-GNPs with different size.Conclusions The size of GNPs can be modulated by controlling the ratio between chloroauric acid and trisodium citrate or sodium borohydride.Meanwhile,the larger the size of GNPs is,the more significant of the shifting to the long wavelength of SPR is.

参考文献/References:

[1] 白春礼.纳米科S及其发展前景.科学通报,2001,46(2):89-92.
[2] Andreu EJ,Martin de Llano JJ,Moreno I,et al.A rapid procedure suitable to assess quantitatively the endocytosis of colloidal gold and it s conjugates in cultured cells.J Histochem Cytochem,1998,46(10):1199-1201.
[3] Dykman L,Khlebtsov N.Gold nanoparticles in biomedical applica-tions:recent advances and perspectives.Chem Soc Rev,2012,41(6):2256-2282.
[4] Griset AP,Waipoie J,Liu R,et al.Expansile nanoparticles:syn-thesis,characterization,and in vivo efficacy of an acid-responsive polymeric drug delivery system.J Am Chem Soc,2009,131(7):2469-2471.
[5] Smith AM,Duan H,Mohs AM,et al.Bioconjugated quantum dots for in vivo molecular and cellular imaging.Adv Drug Deliv Rev,2008,60(11):1226-1240.
[6] Mohamed MB,AbouZeid KM,Abdelsayed V,et al.Growth mecha-nism of anisotropic gold nanocrystals via microwave synthesis:for-mation of dioleamide by gold nanocatalysis.ACS Nano,2010,4(5):2766-2772.
[7] Hu M,Chen J,Li ZY,et al.Gold nanostructures:engineering their plasmonic properties for biomedical applications.Chem Soc Rev,2006,35(11):1084-1094.
[8] Anker JN,Hall WP,Lyandres O,et al.Biosensing with plasmonic nanosensore.Nat Mater,2008,7(6):442-453.
[9] Sokolov K,Follen M,Aaron J,et al.Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles.Cancer Res,2003,63(9):1999-2004.
[10] Zhang XD,Wu D,Shen X,et al.In vivo renal clearance,biodistri-bution,toxicity of gold nanoclusters.Biomaterials,2012,33(18):4628-4638.
[11] Pissuwan D,Valenzuela SM,Cortie MB.Therapeutic possibilities of plasmonically heated gold nanoparticles.Trends Biotechnol,2006,24(2):62-67.
[12] Zheng J,Zhang C,Dickson RM.Highly fluorescent,water-soluble,size-tunable gold quantum dots.Phys Rev Lett,2004,93(7):1-4.
[13] Huang X,El-Sayed IH,Qian W,et al.Cancer cell imaging and pho-tothermal therapy in the near-infrared region by using gold nanorods.J Am Chem Soc,2006,128(6):2115-2120.
[14] Hainfeld JF,Slatkin DN,Smilowitz HM.The use of gold nanoparti-cles to enhance radiotherapy in mice.Phys Med Biol,2004,49(18):N309-315.
[15] Turkevich J,Stevenson PC,Hillier J.A study of the nucleation and growth processes in the synthesis of colloidal gold.Discuss Faraday Soc,1951,11:55-75.
[16] Mei BC,Susumu K,Medintz IL,et al.Polyethylene glycol-based bidentate ligands to enhance quantum dot and gold nanoparticle stability in biological media.Nat Protoc,2009,4(3):412-423.
[17] Fernandes R,Li M,Dujardin E,et al.Ligand-mediated self-assem-bly of polymer-enveloped gold nanoparticle chains and networks.Chem Coramun,2010,46(40):7602-7604.
[18] Brewer SH,Glomm WR,Johnson MC,et al.Probing BSA binding to citrate-coated gold nanoparticles and surfaces.Langmuir,2005,21(20):9303-9307.
[19] Gao J,Huang X,Liu H,et al.Colloidal stability of gold nanoparti-cles modified with thiol compounds:bioconjugation and applica-tion in cancer cell imaging,Langmuir,2012,28(9):4464-4471.
[20] Zhang XD,Wu HY,Wu D,et al.Toxicologic effects of gold nanoparticles in vivo by different administration routes.Int J Nanomedicine,2010,5:771-781.
[21] Zhang XD,Wu D,Shen X,et aL Size-dependent in vivo toxicity of PEG-coated gold nanoparticles.Int J Nanomedicine,2011,6:2071-2081.

相似文献/References:

[1]常静林,张玉民,董辉.金纳米粒子在肿瘤放疗中的研究进展[J].国际放射医学核医学杂志,2018,(3):261.[doi:10.3760/cma.j.issn.1673-4114.2018.03.012]
 Chang Jinglin,Zhang Yumin,Dong Hui.Advances in the application of gold nanoparticles in tumor radiotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(1):261.[doi:10.3760/cma.j.issn.1673-4114.2018.03.012]

备注/Memo

备注/Memo:
收稿日期:2012-09-05。
基金项目:国家自然科学基金(项目编号:81000668);中国医学科学院放射医学研究所学科发展基金(项目编号:SF1207)
通讯作者:张晓东,Email:xiaodongzhang@yahoo.cn
更新日期/Last Update: 1900-01-01