[1]李克新,鞠永健.电子射野影像系统在放疗中的应用进展[J].国际放射医学核医学杂志,2018,(5):468-471.[doi:10.3760/cma.j.issn.1673-4114.2018.05.015]
 Li Kexin,Ju Yongjian.Advances in the application of electronic portal imaging device in radiotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(5):468-471.[doi:10.3760/cma.j.issn.1673-4114.2018.05.015]
点击复制

电子射野影像系统在放疗中的应用进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
期数:
2018年第5期
页码:
468-471
栏目:
综述
出版日期:
2018-10-01

文章信息/Info

Title:
Advances in the application of electronic portal imaging device in radiotherapy
作者:
李克新 鞠永健
226001, 南通市第一人民医院放疗科
Author(s):
Li Kexin Ju Yongjian
Department of Radiotherapy, the First People’s Hospital of Nantong City, Nantong 226001, China
关键词:
放射疗法质量控制电子射野影像系统在线验证
Keywords:
Radiotherapy Quality control Electronic portal imaging device Online verification
DOI:
10.3760/cma.j.issn.1673-4114.2018.05.015
摘要:
电子射野影像系统已成为放疗质量控制和质量保证的重要设备之一,可用于摆位误差验证分析、加速器本身日常质量控制、剂量验证、实时剂量验证等放疗质控指标的采集分析,以保障放疗实施的准确性。笔者就电子射野影像系统在放疗中的应用研究进行简要综述。
Abstract:
Electronic portal imaging devices have become important equipment for radiotherapy quality control and quality assurance. They can be used to verify positioning errors and other quality control indicators. They can also be applied in the daily quality control of the accelerator, dosimetry, and real-time dosimetry to ensure the accuracy of radiotherapy implementation. In this paper, the application of electronic portal imaging devices in radiotherapy is briefly reviewed.

参考文献/References:

[1] Estoesta RP, Attwood L, Naehrig D, et al. Assessment of voluntary deep inspiration breath-hold with CINE imaging for breast radiotherapy[J]. J Med Imaging Radiat Oncol, 2017, 61 (5):689-694. DOI:10.1111/1754-9485.12616.
[2] Li XA, Chen X, Zhang Q, et al. Margin Reduction from IGRT for Soft-Tissue Sarcoma:Secondary Analysis of RTOG0630 Results[J/OL]. Pract Radiat Oncol, 2016, 6 (4):e135-e140[2018-01-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4870138. DOI:10.1016/j.prro.2015.11.012.
[3] Held M, Cremers F, Sneed PK, et al. Assessment of image quality and dose calculation accuracy on kV CBCT, MV CBCT, and MV CT images for urgent palliative radiotherapy treatments[J]. J Appl Clin Med Phys, 2016, 17 (2):279-290. DOI:10.1120/jacmp.v17i2.6040.
[4] Held M, Sneed PK, Fogh SE, et al. Feasibility of MV CBCT-based treatment planning for urgent radiation therapy:dosimetric accuracy of MV CBCT-based dose calculations[J]. J Appl Clin Med Phys, 2015, 16 (6):458-471. DOI:10.1120/jacmp.v16i6.5625.
[5] Poels K, Verellen D, Van de Vondel I, et al. Fiducial marker and marker-less soft-tissue detection using fast MV fluoroscopy on a new generation EPID:investigating the influence of pulsing artifacts and artifact suppression techniques[J/OL]. Med Phys, 2014, 41 (10):101911[2018-01-10]. https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.4896116. DOI:10.1118/1.4896116.
[6] Bryant JH, Rottmann J, Lewis JH, et al. Registration of clinical volumes to beams-eye-view images for real-time tracking[J/OL]. Med Phys, 2014, 41 (12):121703[2018-01-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235653. DOI:10.1118/1.4900603.
[7] Rottmann J, Aristophanous M, Chen A, et al. A multi-region algorithm for markerless beam’s-eye view lung tumor tracking[J]. Phy Med Biol, 2010, 55 (18):5585-5598. DOI:10.1088/0031-9155/55/18/021.
[8] Cho B, Poulsen PR, Sloutsky A, et al. First demonstration of combined kV/MV image-guided real-time dynamic multileaf-collimator target tracking[J]. Int J Radiat Oncol Biol Phys, 2009, 74 (3):859-867. DOI:10.1016/j.ijrobp.2009.02.012.
[9] Rottmann J, Keall P, Berbeco R. Markerless EPID image guided dynamic multi-leaf collimator tracking for lung tumors[J]. Phys Med Biol, 2013, 58 (12):4195-5204. DOI:10.1088/0031-9155/58/12/4195.
[10] Chiu TD, Yan Y, Foster R, et al. Long-term evaluation and cross-checking of two geometric calibrations of kV and MV imaging systems for Linacs[J]. J Appl Clin Med Phys, 2015, 16 (4):306-310. DOI:10.1120/jacmp.v16i4.5140.
[11] Buzurovic I, Huang K, Yu Y, et al. A robotic approach to 4D real-time tumor tracking for radiotherapy[J]. Phys Med Biol, 2011, 56 (5):1299-1318. DOI:10.1088/0031-9155/56/5/005.
[12] Sun B, Goddu SM, Yaddanapudi S, et al. Daily QA of linear accelerators using only EPID and OBI[J]. Med Phys, 2015, 42 (10):5584-5594. DOI:10.1118/1.4929550.
[13] Rowshanfarzad P, Riis HL, Zimmermann SJ, et al. A comprehensive study of the mechanical performance of gantry, EPID and the MLC assembly in Elekta linacs during gantry rotation[J/OL]. Br J Radiol, 2015, 88 (1051):20140581[2018-01-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628515. DOI:10.1259/bjr.20140581.
[14] Huang YC, Yeh CY, Yeh JH, et al. Clinical practice and evaluation of electronic portal imaging device for VMAT quality assurance[J]. Med Dosim, 2013, 38 (1):35-41. DOI:10.1016/j.meddos.2012. 05. 004.
[15] 黎旦, 宾石珍, 程品晶, 等. 非晶硅电子射野影像装置在宫颈癌剂量验证中的应用[J]. 中国医学物理学杂志, 2017, 34 (3):230-234. DOI:10.3969/j.issn.1005-202X.2017.03.003. Li D, Bin SZ, Cheng PJ, et al. Dose verification of cervical cancer using a-Si EPID[J]. Chin J Med Phys, 2017, 34 (3):230-234.
[16] Woodruff HC, Fuangrod T, Rowshanfarzad P, et al. Gantry-angle resolved VMAT pretreatment verification using EPID image prediction[J/OL]. Med Phys, 2013, 40 (8):081715[2018-01-10]. https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.4816384.DOI:10.1118/1.4816384.
[17] Min S, Choi YE, Kwak J, et al. Practical approach for pretreatment verification of IMRT with flattening filter-free (FFF) beams using Varian Portal Dosimetry[J/OL]. J Appl Clin Med Phys, 2014, 16 (1):4934[2018-01-10]. https://www.ncbi.nlm.nih.gov/pubmed/?term=25679149. DOI:10.1120/jacmp.v16i1.4934.
[18] Faught AM, Wu Q, Adamson J. SU-F-T-283:A Novel Device to Enable Portal Dosimetry for Flattening Filter Free Beams[J]. Med Phys, 2016, 43 (6):3527-3528. DOI:10.1118/1.4956423.
[19] Pardo E, Novais JC, Molina López MY, et al. On flattening filter-free portal dosimetry[J]. J Aappl Clin Medl Phys, 2016, 17 (4):132-145. DOI:10.1120/jacmp.v17i4.6147.
[20] Chuter RW, Rixham PA, Weston SJ, et al. Feasibility of portal dosimetry for flattening filter-free radiotherapy[J]. J Applied Clin Med Phys, 2016, 17 (1):112-120. DOI:10.1120/jacmp.v17i1.5686.
[21] Willett A, Gilmore M, Rowbottom C. SU-F-T-567:Sensitivity and Reproducibility of the Portal Imaging Panel for Routine FFF QC and Patient Plan Dose Measurements[J]. Med Phys, 2016, 43 (6):3593-3594. DOI:10.1118/1.4956752.
[22] Miri N, Keller P, Zwan BJ, et al. EPID-based dosimetry to verify IMRT planar dose distribution for the aS1200 EPID and FFF beams[J]. J Appl Clin Med Phys, 2016, 17 (6):292-304. DOI:10.1120/jacmp.v17i6.6336.
[23] Mijnheer BJ, González P, Olaciregui-Ruiz I, et al. Overview of 3-year experience with large-scale electronic portal imaging device-based 3-dimensional transit dosimetry[J/OL]. Pract Radiat Oncol, 2015, 5 (6):e679-e687[2018-01-10]. https://www.sciencedirect.com/science/article/pii/S1879850015002313?via%3Dihub. DOI:10.1016/j.prro.2015.07.001.
[24] Fidanzio A, Porcelli A, Azario L, et al. Quasi real time in vivo dosimetry for VMAT[J/OL]. Med Phys, 2014, 41 (6):062103[2018-01-10]. https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.4875685. DOI:10.1118/1.4875685.
[25] Spreeuw H, Rozendaal R, Olaciregui-Ruiz I, et al. Online 3D EPID-based dose verification:Proof of concept[J]. Med Phys, 2016, 43 (7):3969-3974. DOI:10.1118/1.4952729.
[26] McCowan PM, Van Uytven E, Van Beek T, et al. An in vivo dose verification method for SBRT-VMAT delivery using the EPID[J]. Med Phys, 2015, 42 (12):6955-6963. DOI:10.1118/1.4935201.
[27] Millin AE, Windle RS, Lewis DG. A comparison of electronic portal dosimetry verification methods for use in stereotactic radiotherapy[J]. Phys Med, 2016, 32 (1):188-196. DOI:10.1016/j.ejmp.2015. 12.001.
[28] Fuangrod T, Greer PB, Woodruff HC, et al. Investigation of a real-time EPID-based patient dose monitoring safety system using site-specific control limits[J/OL]. Radiat Oncol, 2016, 11 (1):106[2018-01-10]. https://ro-journal.biomedcentral.com/articles/10.1186/s13014-016-0682-y. DOI:10.1186/s13014-016-0682-y.
[29] Woodruff HC, Fuangrod T, Van Uytven E, et al. First Experience With Real-Time EPID-Based Delivery Verification During IMRT and VMAT Sessions[J]. Int J Radiat Oncol Biol Phys, 2015, 93 (3):516-522. DOI:10.1016/j.ijrobp.2015.07.2271.
[30] Yip S, Rottmann J, Berbeco R. The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking[J/OL]. Med Phys, 2014, 41 (6):061702[2018-01-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032434. DOI:10.1118/1.4873322.
[31] Wang X, Chen L, Xie C, et al. Experimental verification of a 3D in vivo dose monitoring system based on EPID[J]. Oncotarget, 2017, 8 (65):109619-109631. DOI:10.18632/oncotarget.22758.

相似文献/References:

[1]张奇洲,李毓斌,李肖红,等.11C-乙酸盐的自动化合成影响因素的考察及质量控制[J].国际放射医学核医学杂志,2016,40(1):6.[doi:10.3760/cma.j.issn.1673-4114.2016.01.002]
 Zhang Qizhou,Li Yubin,Li Xiaohong,et al.Study of the automated synthesis influence factors and quality control of 11C-acetate[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):6.[doi:10.3760/cma.j.issn.1673-4114.2016.01.002]
[2]李景涛,邓垒,张文珏,等.广泛期小细胞肺癌胸部IMRT后发生放射性肺炎的危险因素分析[J].国际放射医学核医学杂志,2016,40(2):100.[doi:10.3760/cma.j.issn.1673-4114.2016.02.003]
 Li Jingtao,Deng Lei,Zhang Wenjue,et al.Risk factor analysis for predicting radiation pneumonitis in extensive stage small cell lung cancer patients receiving IMRT thoracic radiotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):100.[doi:10.3760/cma.j.issn.1673-4114.2016.02.003]
[3]刘佳,高刚,朴春南,等.调节肿瘤放射敏感性的miRNAs研究进展[J].国际放射医学核医学杂志,2016,40(2):159.[doi:10.3760/cma.j.issn.1673-4114.2016.02.015]
 Liu Jia,Gao Gang,Piao Chunnan,et al.Progress of microRNAs in regulating tumor radiation sensitivity[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):159.[doi:10.3760/cma.j.issn.1673-4114.2016.02.015]
[4]陈晓艳,张江虹,邵春林.STAT3与辐射敏感相关性的研究进展[J].国际放射医学核医学杂志,2016,40(3):191.[doi:10.3760/cma.j.issn.1673-4114.2016.03.007]
 Chen Xiaoyan,Jianghong,Shao Chunlin.Research progresses of correlation between STAT3 and radiosensitivity[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):191.[doi:10.3760/cma.j.issn.1673-4114.2016.03.007]
[5]赵德云,李百龙.植物提取物防治放射性肺损伤的现状与展望[J].国际放射医学核医学杂志,2016,40(3):208.[doi:10.3760/cma.j.issn.1673-4114.2016.03.010]
 Zhao Deyun,Li Bailong.Protective and therapeutic effects of plant extracts on radiation-induced lung injury:present status and future prospects[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):208.[doi:10.3760/cma.j.issn.1673-4114.2016.03.010]
[6]田琦,蒋宁一,郑丽.265例精细个体化131I治疗Graves甲亢的疗效观察[J].国际放射医学核医学杂志,2016,40(4):259.[doi:10.3760/cma.j.issn.1673-4114.2016.04.004]
 Tian Qi,Jiang Ningyi,Zheng Li.Therapeutic effect of fine individual 131I treatment on Graves disease hyperthyroidism[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):259.[doi:10.3760/cma.j.issn.1673-4114.2016.04.004]
[7]贺小红,周新韩,高明勇,等.模型模拟修改部分扫描参数加速MR扫描的方法可行性探讨[J].国际放射医学核医学杂志,2016,40(4):267.[doi:10.3760/cma.j.issn.1673-4114.2016.04.006]
 He Xiaohong,Zhou Xinhan,Gao Mingyong,et al.Feasibility of accelerating MR scan by modifying part of scanning parameters:a phantom simulation study[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):267.[doi:10.3760/cma.j.issn.1673-4114.2016.04.006]
[8]邓大平,卢峰,孙洪强,等.颅脑肿瘤放射治疗时射野外器官吸收剂量体模法测量与分析[J].国际放射医学核医学杂志,2016,40(4):272.[doi:10.3760/cma.j.issn.1673-4114.2016.04.007]
 Deng Daping,Lu Feng,Sun Hongqiang,et al.Test and analysis of out-of-field organ dose in intracranial tumor radiotherapy using phantom[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):272.[doi:10.3760/cma.j.issn.1673-4114.2016.04.007]
[9]卢顺琦,吴锦海,刘海宽,等.上海市数字化乳腺x射线摄影装置质量控制检测分析[J].国际放射医学核医学杂志,2015,39(5):381.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 006]
 lu shunqi,wu jinhai,liu haikuan,et al.Quality analysis of digital mammography facilities in shanghai[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(5):381.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 006]
[10]拓飞,张庆,张京,等.2014年度全国放射性核素γ能谱分析质量控制比对[J].国际放射医学核医学杂志,2015,39(5):401.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 011]
 tuo fei,zhang qing,zhang jing,et al.nationwide intercomparison for radionuclide analyses through γ-spectrometry method in 2014[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(5):401.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 011]
[11]翟贺争,刘辉,李卫星,等.应用Detector729的两种IMRT剂量验证方法比较[J].国际放射医学核医学杂志,2014,38(5):285.[doi:10.3760/cma.j.issn.1673-4114.2014.05.002]
 Zhai He-zheng,Liu Hui,Li Wei-xing,et al.Comparison of two dosimetric verification methods of IMRT using Detector729[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(5):285.[doi:10.3760/cma.j.issn.1673-4114.2014.05.002]
[12]何垠波,周莉,徐庆丰,等.网络管理对肿瘤放疗流程的优化[J].国际放射医学核医学杂志,2012,36(3):182.[doi:10.3760/cma.j.issn.1673-4114.2012.03.016]
 HE Yin-bo,ZHOU Li,XU Qing-feng,et al.Optimization of the radiotherapy procedure using network management[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(5):182.[doi:10.3760/cma.j.issn.1673-4114.2012.03.016]
[13]江波,刘振宅,徐晓.调强放疗中有关多叶准直器的质量保证与质量控制[J].国际放射医学核医学杂志,2006,30(6):378.
 JIANG Bo,LIU Zhen-zhai,XU Xiao.Quality assurance and quality control of multileaf collimator in intensity modulated radiotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2006,30(5):378.

备注/Memo

备注/Memo:
收稿日期:2018-01-10。
基金项目:江苏省六大人才高峰课题(2014-WSN-075);南通市社会发展计划(HS2012036)
通讯作者:鞠永健,Email:juyongjian@aliyun.com
更新日期/Last Update: 2018-10-01