[1]陈建普,李崇佼,文兵,等.PET/CT和MRI在多发性骨髓瘤中的应用与进展[J].国际放射医学核医学杂志,2018,(5):447-452.[doi:10.3760/cma.j.issn.1673-4114.2018.05.011]
 Chen Jianpu,Li Chongjiao,Wen Bing,et al.The application and progress of PET/CT and MRI in multiple myeloma[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(5):447-452.[doi:10.3760/cma.j.issn.1673-4114.2018.05.011]
点击复制

PET/CT和MRI在多发性骨髓瘤中的应用与进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
期数:
2018年第5期
页码:
447-452
栏目:
综述
出版日期:
2018-10-01

文章信息/Info

Title:
The application and progress of PET/CT and MRI in multiple myeloma
作者:
陈建普 李崇佼 文兵 何勇
430071, 武汉大学中南医院核医学科
Author(s):
Chen Jianpu Li Chongjiao Wen Bing He Yong
Department of Nuclear Medicine, Zhong Nan Hospital of Wuhan University, Wuhan 430071, China
关键词:
多发性骨髓瘤磁共振成像正电子发射断层显像计算机体层摄影术全身扩散加权成像
Keywords:
Multiple myeloma Magnetic resonance imaging Positron emission tomography computed tomography Whole-body diffusion-weighted imaging
DOI:
10.3760/cma.j.issn.1673-4114.2018.05.011
摘要:
多发性骨髓瘤(MM)是一种恶性B细胞肿瘤,其主要累及骨髓,部分也可出现髓外浸润。影像学检查是全面评估MM不可或缺的手段,X射线与CT对病灶的检出率低、定量能力差。PET/CT与MRI对MM的评估具有较大的价值,特别是18F-FDG及其他新型分子探针,全身扩散加权成像、动态增强MRI及水脂分离等MRI新技术。笔者就PET/CT及MRI在MM中的应用与进展进行综述。
Abstract:
Multiple myeloma (MM) is a malignant B-cell neoplasm, primarily involving the bone marrow, and some may have extramedullary involvement. Imaging examination is an indispensable tool for comprehensive assessment of MM X-ray and CT have lower lesion detection rate, poor quantitative ability. PET/CT and MRI have great value in the assessment of MM, especially the application of 18F-FDG and other novel molecular probes, whole-body diffusion weighted imaging (DWI), dynamic contrast-enhanced (DCE) MRI and water-fat separation. The author will review the application and progress of PET/CT and MRI in MM.

参考文献/References:

[1] Bodet-Milin C, Eugène T, Bailly C, et al. FDG-PET in the evaluation of myeloma in 2012[J]. Diagn Interv Imaging, 2013, 94 (2):184-189. DOI:10.1016/j.diii.2012.12.006.
[2] Mesguich C, Fardanesh R, Tanenbaum L, et al. State of the art imaging of multiple myeloma:comparative review of FDG PET/CT imaging in various clinical settings[J]. Eur J Radiol, 2014, 83 (12):2203-2223. DOI:10.1016/j.ejrad.2014.09.012.
[3] Durie BG. The role of anatomic and functional staging in myeloma:description of Durie/Salmon plus staging system[J]. Eur J Cancer, 2006, 42 (11):1539-1543. DOI:10.1016/j.ejca.2005.11.037.
[4] Zamagni E, Nanni C, Patriarca F, et al. A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma[J]. Haematologica, 2007, 92 (1):50-55. DOI:10.3324/haematol.10554.
[5] Cascini GL, Falcone C, Console D, et al. Whole-body MRI and PET/CT in multiple myeloma patients during staging and after treatment:personal experience in a longitudinal study[J]. Radiol Med, 2013, 118 (6):930-948. DOI:10.1007/s11547-013-0946-7.
[6] Derlin T, Peldschus K, Münster S, et al. Comparative diagnostic performance of 18F-FDG PET/CT versus whole-body MRI for determination of remission status in multiple myeloma after stem cell transplantation[J]. Eur Radiol, 2013, 23 (2):570-578. DOI:10.1007/s00330-012-2600-5.
[7] Zamagni E, Patriarca F, Nanni C, et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation[J]. Blood, 2011, 118 (23):5989-5995. DOI:10.1182/blood-2011-06-361386.
[8] Usmani SZ, Mitchell A, Waheed S, et al. Prognostic implications of serial 18-fluoro-deoxyglucose emission tomography in multiple myeloma treated with total therapy 3[J]. Blood, 2013, 121 (10):1819-1823. DOI:10.1182/blood-2012-08-451690.
[9] Fonti R, Larobina M, Del Vecchio S, et al. Metabolic tumor volume assessed by 18F-FDG PET/CT for the prediction of outcome in patients with multiple myeloma[J]. J Nucl Med, 2012, 53 (12):1829-1835. DOI:10.2967/jnumed.112.106500.
[10] Bladé J, de Larrea CF, Rosiñol L. Extramedullary involvement in multiple myeloma[J]. Haematologica, 2012, 97 (11):1618-1619. DOI:10.3324/haematol.2012.078519.
[11] Tirumani SH, Sakellis C, Jacene H, et al. Role of FDG-PET/CT in Extramedullary Multiple Myeloma:Correlation of FDG-PET/CT Findings With Clinical Outcome[J/OL]. Clin Nucl Med, 2016, 41 (1):e7-13[2018-02-21]. https://insights.ovid.com/pubmed?pmid=26252323. DOI:10.1097/RLU.0000000000000902.
[12] Zamagni E, Nanni C, Mancuso K, et al. PET/CT Improves the Definition of Complete Response and Allows to Detect Otherwise Unidentifiable Skeletal Progression in Multiple Myeloma[J]. Clin Cancer Res, 2015, 21 (19):4384-4390. DOI:10.1158/1078-0432.CCR-15-0396.
[13] van Lammeren-Venema D, Regelink JC, Riphagen Ⅱ, et al. 18F-fluoro-deoxyglucose positron emission tomography in assessment of myeloma-related bone disease:a systematic review[J]. Cancer, 2012, 118 (8):1971-1981. DOI:10.1002/cncr.26467.
[14] Dankerl A, Liebisch P, Glatting G, et al. Multiple Myeloma:Molecular Imaging with 11C-Methionine PET/CT——Initial Experience[J]. Radiology, 2007, 242 (2):498-508. DOI:10.1148/radiol.2422051980.
[15] Nakamoto Y, Kurihara K, Nishizawa M, et al. Clinical value of 11C-methionine PET/CT in patients with plasma cell malignancy:comparison with 18F-FDG PET/CT[J]. Eur J Nucl Med Mol Imaging, 2013, 40 (5):708-715. DOI:10.1007/s00259-012-2333-3.
[16] Okasaki M, Kubota K, Minamimoto R, et al. Comparison of 11C-4’-thiothymidine, 11C-methionine, and 18F-FDG PET/CT for the detection of active lesions of multiple myeloma[J]. Ann Nucl Med, 2015, 29 (3):224-232. DOI:10.1007/s12149-014-0931-9.
[17] Lapa C, Knop S, Schreder M, et al. 11C-Methionine-PET in Multiple Myeloma:Correlation with Clinical Parameters and Bone Marrow Involvement[J]. Theranostics, 2016, 6 (2):254-261. DOI:10.7150/thno.13921.
[18] Lin C, Ho CL, Ng SH, et al. 11C-acetate as a new biomarker for PET/CT in patients with multiple myeloma:initial staging and postinduction response assessment[J]. Eur J Nucl Med Mol Imaging, 2014, 41 (1):41-49. DOI:10.1007/s00259-013-2520-x.
[19] Ho CL, Chen S, Leung YL, et al. 11C-acetate PET/CT for metabolic characterization of multiple myeloma:a comparative study with 18F-FDG PET/CT[J]. J Nucl Med, 2014, 55 (5):749-752. DOI:10.2967/jnumed.113.131169.
[20] Nanni C, Zamagni E, Cavo M, et al. 11C-choline vs. 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma[J/OL]. World J Surg Oncol, 2007, 5:68[2018-02-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1913918. DOI:10. 1186/1477-7819-5-68.
[21] Philipp-Abbrederis K, Herrmann K, Knop S, et al. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma[J]. EMBO Mol Med, 2015, 7 (4):477-487. DOI:10.15252/emmm.201404698.
[22] Lapa C, Schreder M, Schirbel A, et al.[68Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma-Comparison to[18F]FDG and laboratory values[J/OL]. Theranostics, 2017, 7 (1):205-212[2018-02-21]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5196897. DOI:10.7150/thno.16576.
[23] Dimopoulos MA, Hillengass J, Usmani S, et al. Role of magnetic resonance imaging in the management of patients with multiple myeloma:a consensus statement[J]. J Clin Oncol, 2015, 33 (6):657-664. DOI:10.1200/JCO.2014.57.9961.
[24] Baur-Melnyk A, Buhmann S, Becker C, et al. Whole-body MRI versus whole-body MDCT for staging of multiple myeloma[J]. AJR Am J Roentgenol, 2008, 190 (4):1097-1104. DOI:10.2214/AJR.07.2635.
[25] Mai EK, Hielscher T, Kloth JK, et al. Association between magnetic resonance imaging patterns and baseline disease features in multiple myeloma:analyzing surrogates of tumour mass and biology[J]. Eur Radiol, 2016, 26 (11):3939-3948. DOI:10.1007/s00330-015-4195-0.
[26] Moulopoulos LA, Dimopoulos MA, Kastritis E, et al. Diffuse pattern of bone marrow involvement on magnetic resonance imaging is associated with high risk cytogenetics and poor outcome in newly diagnosed, symptomatic patients with multiple myeloma:a single center experience on 228 patients[J]. Am J Hematol, 2012, 87 (9):861-864. DOI:10.1002/ajh.23258.
[27] Bartel TB, Haessler J, Brown TL, et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma[J]. Blood, 2009, 114 (10):2068-2076. DOI:10.1182/blood-2009-03-213280.
[28] Mai EK, Hielscher T, Kloth JK, et al. A magnetic resonance imaging-based prognostic scoring system to predict outcome in transplant-eligible patients with multiple myeloma[J]. Haematologica, 2015, 100 (6):818-825. DOI:10.3324/haematol.2015.124115.
[29] Giles SL, DeSouza NM, Collins DJ, et al. Assessing myeloma bone disease with whole-body diffusion-weighted imaging:comparison with x-ray skeletal survey by region and relationship with laboratory estimates of disease burden[J]. Clin Radiol, 2015, 70 (6):614-621. DOI:10.1016/j.crad.2015.02.013.
[30] Pawlyn C, Fowkes L, Otero S, et al. Whole-body diffusion-weighted MRI:a new gold standard for assessing disease burden in patients with multiple myeloma?[J]. Leukemia, 2016, 30 (6):1446-1448. DOI:10.1038/leu.2015.338.
[31] Horger M, Weisel K, Horger W, et al. Whole-body diffusion-weighted MRI with apparent diffusion coefficient mapping for early response monitoring in multiple myeloma:preliminary results[J]. AJR Am J Roentgenol, 2011, 196 (6):W790-795. DOI:10.2214/AJR.10.5979.
[32] Lacognata C, Crimì F, Guolo A, et al. Diffusion-weighted whole-body MRI for evaluation of early response in multiple myeloma[J]. Clin Radiol, 2017, 72 (10):850-857. DOI:10.1016/j.crad.2017.05. 004.
[33] Messiou C, Kaiser M. Whole body diffusion weighted MRI-a new view of myeloma[J]. Br J Haematol, 2015, 171 (1):29-37. DOI:10.1111/bjh.13509.
[34] Koh DM, Blackledge M, Padhani AR, et al. Whole-body diffusion-weighted MRI:tips, tricks, and pitfalls[J]. AJR Am J Roentgenol, 2012, 199 (2):252-262. DOI:10.2214/AJR.11.7866.
[35] Merz M, Ritsch J, Kunz C, et al. Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Assessment of Antiangiogenic Treatment Effects in Multiple Myeloma[J/OL]. Clin Cancer Res, 2015, 21 (1):106-112[2018-02-21]. http://clincancerres.aacrjournals.org/content/21/1/106.long. DOI:10.1158/1078-0432.CCR-14-1029.
[36] Merz M, Moehler TM, Ritsch J, et al. Prognostic significance of increased bone marrow microcirculation in newly diagnosed multiple myeloma:results of a prospective DCE-MRI study[J]. Eur Radiol, 2016, 26 (5):1404-1411. DOI:10.1007/s00330-015-3928-4.
[37] Lin C, Luciani A, Belhadj K, et al. Multiple myeloma treatment response assessment with whole-body dynamic contrast-enhanced MR imaging[J]. Radiology, 2010, 254 (2):521-531. DOI:10.1148/radiol.09090629.
[38] Takasu M, Tani C, Sakoda Y, et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) imaging of multiple myeloma:initial clinical efficiency results[J].Eur Radiol, 2012, 22 (5):1114-1121. DOI:10.1007/s00330-011-2351-8.
[39] Takasu M, Kaichi Y, Tani C, et al. Iterative Decomposition of Water and Fat with Echo Asymmetry and Least-Squares Estimation (IDEAL) Magnetic Resonance Imagingas a Biomarker for Symptomatic Multiple Myeloma[J/OL]. PLoS One, 2015, 10 (2):e116842[2018-02-21]. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116842. DOI:10.1371/journal.pone.0116842.
[40] Latifoltojar A, Hall-Craggs M, Rabin N, et al. Whole body magnetic resonance imaging in newly diagnosed multiple myeloma:early changes in lesional signal fat fraction predict disease response[J]. Br J Haematol, 2017, 176 (2):222-233. DOI:10.1111/bjh.14401.
[41] Latifoltojar A, Hall-Craggs M, Bainbridge A, et al. Whole-body MRI quantitative biomarkers are associated significantly with treatment response in patients with newly diagnosed symptomatic multiple myeloma following bortezomib induction[J]. Eur Radiol, 2017, 27 (12):5325-5336. DOI:10.1007/s00330-017-4907-8.
[42] Sachpekidis C, Hillengass J, Goldschmidt H, et al. Comparison of 18F-FDG PET/CT and PET/MRI in patients with multiple myeloma[J]. Am J Nucl Med Mol Imaging, 2015, 5 (5):469-478.
[43] Shah SN, Oldan JD. PET/MR Imaging of Multiple Myeloma[J]. Magn Reson Imaging Clin N Am, 2017, 25 (2):351-365. DOI:10.1016/j.mric.2017.01.003.

相似文献/References:

[1]岳进,苏丽萍.全身MRI与PET/CT在淋巴瘤骨髓浸润诊断及预后中的作用[J].国际放射医学核医学杂志,2016,40(1):50.[doi:10.3760/cma.j.issn.1673-4114.2016.01.010]
 Yue Jin,Su Lipin.Function of whole-body MRI and PET/CT in the diagnosis and prognosis of lymphoma with bone marrow infiltration[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):50.[doi:10.3760/cma.j.issn.1673-4114.2016.01.010]
[2]李敏,蒋涛,彭朋,等.直肠内注入模拟粪便的动态MRI对女性盆底痉挛综合征的诊断价值[J].国际放射医学核医学杂志,2016,40(3):165.[doi:10.3760/cma.j.issn.1673-4114.2016.03.001]
 Li Min,Jiang Tao,Peng Peng,et al.Value of dynamic MRI with rectum injection in the diagnosis of female spastic pelvic floor syndrome[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):165.[doi:10.3760/cma.j.issn.1673-4114.2016.03.001]
[3]唐令胜,刘朝晖,李红梅,等.低场磁共振DWI技术与常规MRI扫描对超急性脑梗死的诊断灵敏度的比较[J].国际放射医学核医学杂志,2016,40(3):187.[doi:10.3760/cma.j.issn.1673-4114.2016.03.006]
 Tang Lingsheng,Liu Zhaohui,Li Hongmei,et al.Comparison of the diagnostic sensitivity of low-field magnetic resonance diffusion weighted imaging technology and conventional MRI scanning for super acute cerebral infarction[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):187.[doi:10.3760/cma.j.issn.1673-4114.2016.03.006]
[4]贺小红,周新韩,高明勇,等.模型模拟修改部分扫描参数加速MR扫描的方法可行性探讨[J].国际放射医学核医学杂志,2016,40(4):267.[doi:10.3760/cma.j.issn.1673-4114.2016.04.006]
 He Xiaohong,Zhou Xinhan,Gao Mingyong,et al.Feasibility of accelerating MR scan by modifying part of scanning parameters:a phantom simulation study[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):267.[doi:10.3760/cma.j.issn.1673-4114.2016.04.006]
[5]卢瑞梁,贺小红,蔡华清,等.不同MRI序列检出聚丙烯酰胺水凝胶注射隆乳患者乳腺病变效能的比较研究[J].国际放射医学核医学杂志,2016,40(6):435.[doi:10.3760/cma.j.issn.1673-4114.2016.06.007]
 Lu Ruiliang,He Xiaohong,Cai Huaqing,et al.The different MRI sequences to detect breast lesions in polyacrylamide hydrogel injection for augmentation patients: a comparative study[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):435.[doi:10.3760/cma.j.issn.1673-4114.2016.06.007]
[6]廖光星,冷志欣,肖国有.前列腺癌骨转移影像诊断方法研究进展[J].国际放射医学核医学杂志,2016,40(6):464.[doi:10.3760/cma.j.issn.1673-4114.2016.06.012]
 Liao Guangxing,Leng Zhixin,Xiao Guoyou.Progress of imaging in the diagnosis of bone metastases of prostate cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):464.[doi:10.3760/cma.j.issn.1673-4114.2016.06.012]
[7]马彦云,张辉.磁共振体素内不相干运动扩散加权成像的原理及应用进展[J].国际放射医学核医学杂志,2016,40(6):469.[doi:10.3760/cma.j.issn.1673-4114.2016.06.013]
 Ma Yanyun,Zhang Hui.The basic principle and application progress of intravoxel incoherent motion imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(5):469.[doi:10.3760/cma.j.issn.1673-4114.2016.06.013]
[8]周金鑫,张一帆.胰岛细胞移植监测的分子影像学进展[J].国际放射医学核医学杂志,2015,39(6):478.[doi:10.3760/cma.j.issn.1673-4114.2015.06.009]
 Zhou Jinxin,Zhang Yifan.Research progress of molecular imaging in monitoring islet transplantation[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(5):478.[doi:10.3760/cma.j.issn.1673-4114.2015.06.009]
[9]樊鹏,甄俊平,王峻.MR示踪技术在干细胞移植治疗软骨缺损中的研究进展[J].国际放射医学核医学杂志,2015,39(6):497.[doi:10.3760/cma.j.issn.1673-4114.2015.06.013]
 Fan Peng,Zhen Junping,Wang Jun.The progress of magnetic resonance cell tracing technique in stem cells transplantation treatment of cartilage defects[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(5):497.[doi:10.3760/cma.j.issn.1673-4114.2015.06.013]
[10]张学花,翟昭华.胰腺微囊性腺瘤影像学报道一例[J].国际放射医学核医学杂志,2015,39(6):516.[doi:10.3760/cma.j.issn.1673-4114.2015.06.019]

备注/Memo

备注/Memo:
收稿日期:2018-02-22。
通讯作者:何勇,Email:vincentheyong@163.com
更新日期/Last Update: 2018-10-01