[1]郑晨曦,潘东风,袁耿彪.白细胞核素显像探针的临床应用和研究进展[J].国际放射医学核医学杂志,2018,(3):286-290.[doi:10.3760/cma.j.issn.1673-4114.2018.03.017]
 Zheng Chenxi,Pan Dongfeng,Yuan Gengbiao.Clinical application and progress in the development of radionuclide probes for leukocyte imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(3):286-290.[doi:10.3760/cma.j.issn.1673-4114.2018.03.017]
点击复制

白细胞核素显像探针的临床应用和研究进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
期数:
2018年第3期
页码:
286-290
栏目:
综述
出版日期:
2018-05-25

文章信息/Info

Title:
Clinical application and progress in the development of radionuclide probes for leukocyte imaging
作者:
郑晨曦1 潘东风2 袁耿彪1
1. 400010, 重庆医科大学附属第二医院核医学科;
2. 22908 VA, 美国弗吉尼亚大学放射医学系
Author(s):
Zheng Chenxi1 Pan Dongfeng2 Yuan Gengbiao1
1. Department of Nuclear Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;
2. Department of Radiology and Medical Imaging, University of Virginia, Charlottesville VA 22908, America
关键词:
炎症白细胞放射性核素显像
Keywords:
InflammationLeukocytesRadionuclide imaging
DOI:
10.3760/cma.j.issn.1673-4114.2018.03.017
摘要:
炎症是机体对抗侵入性病原体和其他损伤的第一道防线,它在组织修复和消除有害病原体方面起着重要作用,但过度炎症反应或炎症消退的延迟将破坏组织中的正常细胞。因此,寻求一种理想的炎症显像方法一直都是临床和科研工作者所追求的目标。白细胞核素显像探针通过即时示踪白细胞,高特异性地反映炎症的病理过程,能早期准确反映炎症程度和预后评价。笔者就此类炎症显像剂的临床应用和研究进行综述。
Abstract:
Inflammation plays a significant role in the defense against invasive pathogens and injuries. This process helps in tissue repair and elimination of harmful pathogens. However, over or extended inflammatory reaction is harmful to normal cells. Numerous clinical and scientific studies have explored an ideal inflammatory imaging method. Radionuclide imaging can reveal the degree and pathological process of inflammation and prognosticate therapeutic response using instant and highly specific monitoring of leukocyte activation and distribution. This study was performed to provide a brief description of the clinical application and progress in the development of radionuclide probes.

参考文献/References:

[1] Wu C, Li F, Niu G, et al. PET imaging of inflammation biomarkers[J]. Theranostics, 2013, 3(7):448-466. DOI:10.7150/thno.6592.
[2] Li J, Zhang Y, Chordia MD, et al. Multimodal formyl peptide receptor 1 targeted inflammation imaging probe:cFLFLF-MHI-DOTA[J]. Bioorg Med Chem Lett, 2016, 26(3):1052-1055. DOI:10.1016/j.bmcl.2015.12.029.
[3] 付占立. 炎症显像剂的临床应用及研究进展[J]. 同位素, 2010, 23(3):186-192. Fu ZL. Clinical Application and Progress in Research of Inflammation Imaging Agent[J]. J Isotopes, 2010, 23(3):186-192.
[4] Virtanen H, Silvola JMU, Autio A, et al. Comparison of 68Ga-DOTA-Siglec-9 and 18F-Fluorodeoxyribose-Siglec-9:Inflammation Imaging and Radiation Dosimetry[J/OL]. Contrast Media Mol Imaging, 2017, 2017:7645070[2018-02-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5804415. DOI:10.1155/2017/7635070.
[5] 朱文佳, 要少波, 邢海群, 等. 核医学炎症显像病原菌特异性示踪剂研究进展[J]. 中国医学影像学杂志, 2016, 24(9):710-713. DOI:10.3969/j.issn.1005-5185.2016.09.020. Zhu WJ, Yao SB, Xing HQ, et al. Progress in Research of Pathogen-specific Tracers for Inflammation Imaging in Nuclear Medicine[J]. Chin J Med Imaging, 2016, 24(9):710-713.
[6] Goldsmith SJ, Vallabhajosula S. Clinically proven radiopharmaceu-ticals for infection imaging:mechanisms and applications[J]. Semin Nucl Med, 2009, 39(1):2-10. DOI:10.1053/j.semnuclmed. 2008. 08.002.
[7] Bhargava KK, Gupta RK, Nichols KJ, et al. In vitro human leukocyte labeling with 64Cu:an intraindividual comparison with 111In-oxine and 18F-FDG[J]. Nucl Med Biol, 2009, 36(5):545-549. DOI:10.1016/j.nucmedbio.2009.03.001.
[8] Tseng JC, Kung AL. In vivo imaging method to distinguish acute and chronic inflammation[J/OL]. J Vis Exp, 2013, 78:e50690[2018-02-03]. https://www.ncbi.nlm.nih.gov/pubmed/23978851. DOI:10.3791/50690.
[9] Palestro CJ, Love C, Bhargava KK. Labeled leukocyte imaging:current status and future directions[J]. Q J Nucl Med Mol Imaging, 2009, 53(1):105-123.
[10] Boerman OC, Dams ET, Oyen WJ, et al. Radiopharmaceuticals for scintigraphic imaging of infection and inflammation[J]. Inflamm Res, 2001, 50(2):55-64. DOI:10.1007/s000110050725.
[11] Osman S, Danpure HJ. The use of 2-[18F]fluoro-2-deoxy-D-glucose as a potential in vitro agent for labelling human granulocytes for clinical studies by positron emission tomography[J]. Int J Rad Appl Instrum B, 1992, 19(2):183-190.
[12] Rini JN, Bhargava KK, Tronco GG, et al. PET with FDG-labeled leukocytes versus scintigraphy with 111In-oxine-labeled leukocytes for detection of infection[J]. Radiology, 2006, 238(3):978-987. DOI:10.1148/radiol.2382041993.
[13] Yilmaz S, Aliyev A, Ekmekcioglu O, et al. Comparison of FDG and FDG-labeled leukocytes PET/CT in diagnosis of infection[J]. Nuklearmedizin, 2015, 54(6):262-271. DOI:10.3413/Nukmed-0724-15-02.
[14] Bhattacharya A, Kochhar R, Sharma S, et al. PET/CT with 18F-FDG-labeled autologous leukocytes for the diagnosis of infected fluid collections in acute pancreatitis[J]. J Nucl Med, 2014, 55(8):1267-1272. DOI:10.2967/jnumed.114.137232.
[15] Dumarey N. Imaging with FDG labeled leukocytes:is it clinically useful?[J]. Q J Nucl Med Mol Imaging, 2009, 53(1):89-94.
[16] Klett R, Kordelle J, Stahl U, et al. Immunoscintigraphy of septic loosening of knee endoprosthesis:a retrospective evaluation of the antigranulocyte antibody BW 250/183[J]. Eur J Nucl Med Mol Imaging, 2003, 30(11):1463-1466. DOI:10.1007/s00259-003-1275-1.
[17] Akhtar MS, Imran MB, Nadeem MA, et al. Antimicrobial peptides as infection imaging agents:better than radiolabeled antibiotics[J]. Int J Pept, 2012, 2012:965238. DOI:10.1155/2012/965238.
[18] Thakur ML, Marcus CS, Kipper SL, et al. Imaging infection with LeuTech[J]. Nucl Med Commun, 2001, 22(5):513-519.
[19] Xing D, Ma X, Ma J, et al. Use of anti-granulocyte scintigraphy with 99mTc-labeled monoclonal antibodies for the diagnosis of periprosthetic infection in patients after total joint arthroplasty:a diagnostic meta-analysis[J/OL]. PLoS One, 2013, 8(7):e69857[2018-02-03]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724677/. DOI:10.1371/journal.pone.0069857.
[20] Richter WS, Ivancevic V, Meller J, et al. 99mTc-besilesomab (Scintimun) in peripheral osteomyelitis: comparison with 99mTc-labelled white blood cells[J]. Eur J Nucl Med Mol Imaging, 2011, 38(5):899-910. DOI:10.1007/s00259-011-1731-2.
[21] Thakur ML, Marcus CS, Henneman P, et al. Imaging inflammatory diseases with neutrophil-specific technetium-99m-labeled monoclonal antibody anti-SSEA-1[J]. J Nucl Med, 1996, 37(11):1789-1795.
[22] Gemmel F, Dumarey N, Welling M. Future diagnostic agents[J]. Semin Nucl Med, 2009, 39(1):11-26. DOI:10.1053/j.semnuclmed.2008.08.005.
[23] Tsopelas C. Radiotracers used for the scintigraphic detection of infection and inflammation[J/OL]. Scientific World Journal, 2015, 2015:676719[2018-02-02]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337049. DOI:10.1155/2015/676719.
[24] Rennen HJ, Boerman OC, Oyen WJ, et al. Specific and rapid scintigraphic detection of infection with 99mTc-labeled interleukin-8[J]. J Nucl Med, 2001, 42(1):117-123.
[25] Rennen HJ, Bleeker-Rovers CP, van Eerd JE, et al. 99mTc-labeled interleukin-8 for scintigraphic detection of pulmonary infections[J]. Chest, 2004, 126(6):1954-1961. DOI:10.1378/chest.126.6.1954.
[26] Rennen HJ, Boerman OC, Oyen WJ, et al. Kinetics of 99mTc-labeled interleukin-8 in experimental inflammation and infection[J]. J Nucl Med, 2003, 44(9):1502-1509.
[27] Bleeker-Rovers CP, Rennen HJ, Boerman OC, et al. 99mTc-labeled interleukin 8 for the scintigraphic detection of infection and inflammation:first clinical evaluation[J]. J Nucl Med, 2007, 48(3):337-343.
[28] Le Y, Murphy PM, Wang JM. Formyl-peptide receptors revisited[J]. Trends Immunol, 2002, 23(11):541-548.
[29] Wang ZG, Ye RD. Characterization of two new members of the formyl peptide receptor gene family from 129S6 mice[J]. Gene, 2002, 299(1-2):57-63.
[30] Pollak A, Goodbody AE, Ballinger JR, et al. Imaging inflammation with 99Tcm-labeled chemotactic peptides:analogues with reduced neutropenia[J]. Nucl Med Commun, 1996, 17(2):132-139.
[31] Zhang Y, Kundu B, Fairchild KD, et al. Synthesis of novel neutrophil-specific imaging agents for Positron Emission Tomography (PET) imaging[J]. Bioorg Med Chem Lett, 2007, 17(24):6876-6878. DOI:10.1016/j.bmcl.2007.10.013.
[32] Stasiuk GJ, Holloway PM, Rivas C, et al. 99mTc SPECT imaging agent based on cFLFLFK for the detection of FPR1 in inflammation[J]. Dalton Trans, 2015, 44(11):4986-4993. DOI:10.1039/c4dt02980a.
[33] Yang X, Chordia MD, Du X, et al. Targeting formyl peptide receptor 1 of activated macrophages to monitor inflammation of experimental osteoarthritis in rat[J]. J Orthop Res, 2016, 34(9):1529-1538. DOI:10.1002/jor.23148.
[34] Pellico J, Lechuga-Vieco AV, Almarza E, et al. In vivo imaging of lung inflammation with neutrophil-specific 68Ga nano-radiotracer[J]. Sci Rep, 2017, 7(1):13242. DOI:10.1038/s41598-017-12829-y.
[35] Chen J, Cheng H, Dong Q, et al.[99mTc]cFLFLF for Early Diagnosis and Therapeutic Evaluation in a Rat Model of Acute Osteomyelitis[J]. Mol Imaging Biol, 2015, 17(3):337-344. DOI:10.1007/s11307-014-0787-3.
[36] Locke LW, Chordia MD, Zhang Y, et al. A novel neutrophil-specific PET imaging agent:cFLFLFK-PEG-64Cu[J]. J Nucl Med, 2009, 50(5):790-797. DOI:10.2967/jnumed.108.056127.
[37] Zhang Y, Kundu B, Zhong M, et al. PET imaging detection of macrophages with a formyl peptide receptor antagonist[J]. Nucl Med Biol, 2015, 42(4):381-386. DOI:10.1016/j.nucmedbio.2014.12.001.
[38] Locke LW, Kothandaraman S, Tweedle M, et al. Use of a leukocyte-targeted peptide probe as a potential tracer for imaging the tuberculosis granuloma[J]. Tuberculosis (Edinb), 2018, 108:201-210. DOI:10.1016/j.tube.2018.01.001.

相似文献/References:

[1]李海军,程赢,乐晨,等.人外周血白细胞黏附分子的辐射效应研究[J].国际放射医学核医学杂志,2008,32(3):175.
 LI Hai-jun,CHENG Ying,LE Chen,et al.Research on effects of ionizing radiation of human peripheral blood white cell adhesive molecules[J].International Journal of Radiation Medicine and Nuclear Medicine,2008,32(3):175.
[2]林琛,王鲁华,李俊雄,等.131Ⅰ治疗Graves’甲状腺亢进症伴白细胞减少前后血清和尿中β2-微球蛋白变化分析[J].国际放射医学核医学杂志,2007,31(2):98.
 LIN Chen,WANG Lu-hua,LI Jun-xiong,et al.Changes of serum and urine β2-microglobulin of leukopenia in hyperthyroidism of Graves’ disease before and after 131Ⅰ therapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2007,31(3):98.
[3]李林法.18F-氟代脱氧葡萄糖正电子发射体层显像在感染与炎症病变中的应用[J].国际放射医学核医学杂志,2006,30(1):26.
 LI Lin-fa.The application of 18F-fluorodeoxyglucose positron emission tomography in infection and inflammation[J].International Journal of Radiation Medicine and Nuclear Medicine,2006,30(3):26.
[4]楚进锋,王学斌.感染和炎症显像剂的研究与应用[J].国际放射医学核医学杂志,2002,26(5):200.
 CHU Jin-feng,WANG Xue-bin.Study and application of imaging agents for infection and inflammation[J].International Journal of Radiation Medicine and Nuclear Medicine,2002,26(3):200.
[5]蒋茂松.炎症病灶核素定位显像[J].国际放射医学核医学杂志,1997,21(5):272.
[6]赵春雷,栗维国,罗锡圭,等.核医学炎症显像对临床炎症性疾病的评价[J].国际放射医学核医学杂志,1996,20(6):250.
[7]孟媛媛,杨福军,徐文清.乏氧诱导因子在疾病中作用机制的研究进展[J].国际放射医学核医学杂志,2017,41(5):347.[doi:10.3760/cma.j.issn.1673-4114.2017.05.008]
 Meng Yuanyuan,Yang Fujun,Xu Wenqing.Review of retinal receptors and molecular imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(3):347.[doi:10.3760/cma.j.issn.1673-4114.2017.05.008]

备注/Memo

备注/Memo:
收稿日期:2018-02-04。
通讯作者:袁耿彪,Email:yuan_gb@126.com
更新日期/Last Update: 2018-05-25