[1]边佩鲜,杨冰,王靖雅,等.NICD表达下调对辐射损伤小鼠成骨细胞系MC3T3-E1增殖和功能基因表达的影响[J].国际放射医学核医学杂志,2018,(2):135-142.[doi:10.3760/cma.j.issn.1673-4114.2018.02.007]
 Bian Peixian,Yang Bing,Wang Jinya,et al.Effects of NICD expression downregulation on the proliferation and function-related gene expression of radiation-damaged MC3T3-E1 cells[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(2):135-142.[doi:10.3760/cma.j.issn.1673-4114.2018.02.007]
点击复制

NICD表达下调对辐射损伤小鼠成骨细胞系MC3T3-E1增殖和功能基因表达的影响(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
期数:
2018年第2期
页码:
135-142
栏目:
基础研究
出版日期:
2018-05-09

文章信息/Info

Title:
Effects of NICD expression downregulation on the proliferation and function-related gene expression of radiation-damaged MC3T3-E1 cells
作者:
边佩鲜1 杨冰2 王靖雅1 孙元明1 龙伟1
1. 300192 天津, 中国医学科学院北京协和医学院放射医学研究所, 天津市放射医学与分子核医学重点实验室;
2. 300070, 天津医科大学基础医学院细胞生物学系
Author(s):
Bian Peixian1 Yang Bing2 Wang Jinya1 Sun Yuanming1 Long Wei1
1. Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China;
2. Derpartment of Cell Biology, Institute of Medicine, Tianjin Medical University, Tianjin 300070, China
关键词:
Notch信号通路胞内结构域RNA干扰辐射损伤实验性MC3T3-E1细胞
Keywords:
Notch intracellular dominRNA interferenceRadiation injuries experimentalMC3T3-E1 cell
DOI:
10.3760/cma.j.issn.1673-4114.2018.02.007
摘要:
目的 利用RNA干扰抑制小鼠成骨细胞系MC3T3-E1表达Notch信号通路胞内结构域(NICD),探讨靶向抑制NICD表达对辐射损伤MC3T3-E1细胞的增殖和相关功能基因表达的影响。方法 建立抑制NICD表达的MC3T3-E1细胞株,利用实时定量PCR (qRT-PCR)和Western blot法检测其NICD基因的表达。MC3T3-E1细胞和NICD RNA干扰MC3T3-E1细胞经2 Gy γ射线照射后,用BrdU掺入法和qRT-PCR法检测上述细胞的增殖及相关功能基因的表达水平。使用Student-Newman-Keuls进行组间差异分析,两组间比较采用t检验。结果 用RNA干扰技术可靶向抑制MC3T3-E1细胞表达NICD。抑制NICD表达可干扰前体成骨细胞和成骨细胞的增殖。2 Gy照射后,前体成骨细胞和成骨细胞以及NICD RNA干扰的成骨细胞的增殖明显下降,各靶细胞的相关功能基因与照射前相比的变化如下:①2 Gy照射后的前体成骨细胞成骨特导性转录因子(Runx2)表达上调,差异有统计学意义(t=2.353,P<0.05),NICD RNA干扰的前体成骨细胞Runx2表达下调,差异有统计学意义(t=2.353,P<0.05);②2 Gy照射后的前体成骨细胞和成骨细胞以及NICD RNA干扰的前体成骨细胞碱性磷酸酶(ALP)表达上调,差异有统计学意义(t=3.182、3.345、3.555,均P<0.05),NICD RNA干扰的成骨细胞ALP表达下调,差异有统计学意义(t=5.045,P<0.01);③2 Gy照射后前体成骨细胞核因子κB受体活化因子配体(RANKL)表达下调,差异有统计学意义(t=2.541,P<0.05),成骨细胞和NICD干扰的前体成骨细胞RANKL表达上调,差异有统计学意义(t=3.299,P<0.05;t=10.212,P<0.01),而抑制NICD表达则发生相反变化,差异无统计学意义(t=0.765,P>0.05);④2 Gy照射后的前体成骨细胞和成骨细胞骨保护素(OPG)表达下调,差异有统计学意义(t=2.994、2.782,均P<0.05),抑制NICD表达使前体成骨细胞OPG表达上调,差异有统计学意义(t=5.841,P<0.01),成骨细胞OPG表达下调,差异有统计学意义(t=2.544,P<0.05);⑤2 Gy照射后各靶细胞巨噬细胞集落刺激因子(M-CSF)表达变化趋势与RANKL表达变化情况一致。结论 在不同阶段的成骨细胞中抑制NICD表达对辐射损伤表现出的作用是不同的:①可降低前体成骨细胞和成骨细胞的增殖,对辐射损伤后的前体成骨细胞的增殖有保护作用;②可通过调节Runx2从而明显抑制辐照后前体成骨细胞分化,减少骨质丢失;③辐照后各成骨细胞不会通过RANKL/OPG/RANK系统表现出对破骨细胞功能的调节作用;④成骨细胞经过调节M-CSF表现出对破骨细胞的功能抑制作用。
Abstract:
Objective RNA interference (RNAi) is used to inhibit Notch intracellular domain (NICD) expression in MC3T3-E1 cells. The aim of RNAi is to observe the effect of the inhibition of the NICD expression on cell proliferation and function-related gene expression in MC3T3-E1 cells exposed to 2 Gy radiation. Methods The MC3T3-E1 cells were established to inhibit the NICD. The NICD expression of cells was detected by using qRT-PCR and Western blot. MC3T3-E1 and inhibited NICD MC3T3-E1 cells were irradiated with 2 Gy. Then, the proliferation and function-related gene expression were detected through BrdU incorporation and qRT-PCR. Results NICD expression in MC3T3-E1 cells could be inhibited by the RNAi technology. The inhibition of NICD expression could interfere with the proliferation of precursor osteoblasts and osteoblasts. The proliferation of precursor osteoblasts, osteoblasts, and NICD RNAi osteoblasts significantly decreased after 2 Gy irradiation. The function-related gene expression of each target cell is as follows. ① The expression of Runt-related transcription factor 2 (Runx2) was upregulated in precursor osteoblasts (t=2.353, P<0.05) and downregulated in the NICD RNAi precursor osteoblasts (t=2.353, P<0.05) after 2 Gy irradiation. ② The expression of alkaline phosphatase (ALP) was upregulated in precursor osteoblasts and osteoblasts and the NICD RNAi precursor osteoblasts (t=3.182, 3.345, 3.555, all P<0.05) and was downregulated in the NICD RNAi osteoblasts (t=5.045, P<0.01) after 2 Gy irradiation. ③ The expression of receptor activator of nuclear factor κB ligand (RANKL) was downregulated in precursor osteoblasts (t=2.541, P<0.05) and was upregulated in osteoblasts and NICD RNAi precursors osteoblast (t=3.299, P<0.05; t=10.212, P<0.01) after 2 Gy irradiation. However, the inhibition of the NICD expression could cause an opposite change in other cells (t=0.765, P > 0.05). ④ The expression of osteoprotegerin (OPG) was downregulated in precursor osteoblasts and osteoblasts (t=2.994 and 2.782, P<0.05) after 2 Gy irradiation. However, the inhibition of the NICD expression could cause expression upregulation in precursor osteoblasts and expression downregulation in osteoblasts (t=5.841, P<0.01). ⑤ The expression of macrophage-colony stimulating factor (M-CSF) in the target cells exhibited the same trend as the expression of RANKL after 2 Gy irradiation. Conclusions The inhibition of the NICD expression exerts different effects on the differentiation of irradiated osteoblasts. The inhibition of the NICD expression could cause a series of changes including:①It may decrease the proliferation of precursor osteoblasts and osteoblasts and protect the proliferation of differentiating precursor osteoblasts after irradiation. ②It can significantly inhibit the differentiation of precursors osteoblasts after irradiation and reduce bone loss through regulating the expression of Runx2. ③The osteoblasts did not show the regulated function of the osteoclasts through the RANKL/OPG/RANK system. ④The osteoblasts can exhibit the inhibited function of the osteoclasts through the expression of M-CSF.

参考文献/References:

[1] Brown SA, Guise TA. Cancer treatment-related bone disease[J]. Crit Rev Eukaryot Gene Expr, 2009, 19(1):47-60. DOI:10.1615/CritRevEukarGeneExpr.v19.i1.20.
[2] 杨文峰, 杨志祥, 胡燕, 等. 《外照射放射性骨损伤诊断标准》解读[J]. 国际放射医学与核医学杂志, 2012, 36(4):227-230. DOI:10.3760/cma.j.issn.1673-4114.2012.04.008. Yang WF, Yang ZX, Hu Y, et al. Explanation of Diagnostic Criteria for External Radiation Bone Injury[J]. Int J Radiat Med Nucl Med, 2012, 36(4):227-230.
[3] Hopewell JW. Radiation-therapy effects on bone density[J]. Med Pediatr Oncol, 2003, 41(3):208-211. DOI:10.1002/mpo.10338.
[4] Willey JS, Lloyd SA, Nelson GA, et al. Space Radiation and Bone Loss[J]. Gravit Space Biol Bull, 2011, 25(1):14-21.
[5] Willey JS, Lloyd SA, Robbins ME, et al. Early increase in osteoclast number in mice after whole-body irradiation with 2 Gy X rays[J]. Radiat Res, 2008,170(3):388-392. DOI:10.1667/RR1388.1.
[6] Hamilton SA, Pecaut MJ, Gridley DS, et al. A murine model for bone loss from therapeutic and space-relevant sources of radiation[J]. J Appl Physiol (1985), 2006, 101(3):789-793. DOI:10.1152/japplphysiol.01078.2005.
[7] Chaves NAH, Machado D, Yano CL, et al. Antioxidant defense and apoptotic effectors in ascorbic acid and β-glycerophosphate-induced osteoblastic differentiation[J]. Dev Growth Differ, 2011, 53(1):88-96. DOI:10.1111/j.1440-169X.2010.01232.x.
[8] 唐泉, 杨冰, 仲蕾蕾, 等. 电离辐射对MC3T3细胞增殖和Notch1、Jagged1基因表达的影响[J]. 辐射损伤与辐射工艺学报, 2012, 30(6):374-377. Tang Q, Yang B, Zhong LL, et al. Effects of ionizing radiation on MC3T3 cell proliferation and expression of Notch1 and Jagged1[J]. J Radiat Res Radiat Process, 2012, 30(6):374-377.
[9] Lai EC. Notch signaling:control of cell communication and cell fate[J]. Development, 2004, 131(5):965-973. DOI:10.1242/dev.01074.
[10] Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease[J]. Physiol Rev, 2017, 97(4):1235-1294. DOI:10.1152/physrev.00005.2017.
[11] Zanotti S, Canalis E. Notch and the skeleton[J]. Mol Cell Biol, 2010, 30(4):886-896. DOI:10.1128/MCB.01285-09.
[12] Bo Y, Yan L, Gang Z, et al. Effect of calcitonin gene-related peptide on osteoblast differentiation in an osteoblast and endothelial cell co-culture system[J]. Cell Biol Int, 2012, 36(10):909-915. DOI:10.1042/CBI20110562.
[13] Pérez-Campo FM, May T, Zauers J, et al. Generation and characterization of two immortalized human osteoblastic cell lines useful fo r epigenetic studies[J]. J Bone Miner Metab, 2017, 35(2):150-160. DOI:10.1007/s00774-016-0753-z.
[14] Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method[J]. Nat Protoc, 2008, 3(6):1101-1108.
[15] Gordon WR, Arnett KL, Blacklow SC. The molecular logic of Notch signaling-a structural and biochemical perspective[J]. J Cell Sci, 2008, 121(Pt 19):3109-3119. DOI:10.1242/jcs.035683.
[16] Mead TJ, Yutzey KE. Notch signaling and the developing skeleton[J]. Adv Exp Med Biol, 2012, 727:114-130. DOI:10.1007/978-1-4614-0899-4_9.
[17] Engin F, Yao Z, Yang T, et al. Dimorphic effects of Notch signaling in bone homeostasis[J]. Nat Med, 2008, 14(3):299-305. DOI:10.1038/nm1712.
[18] Bai S, Kopan R, Zou W, et al. NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells[J]. J Biol Chem, 2008, 283(10):6509-6518. DOI:10.1074/jbc.M707000200.
[19] Wei J, Shimazu J, Makinistoglu MP, et al. Glucose Uptake and Runx2 Synergize to Orchestrate Osteoblast Differentiation and Bone Formation[J]. Cell, 2015, 161(7):1576-1591. DOI:10.1016/j.cell.2015.05.029.
[20] Franceschi RT, Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2:responsiveness to multiple signal transduction pathways[J]. J Cell Biochem, 2003, 88(3):446-454. DOI:10.1002/jcb.10369.
[21] Liu W, Toyosawa S, Furuichi T, et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures[J]. J Cell Biol, 2001, 155(1):157-166. DOI:10.1083/jcb.200105052.
[22] Harada H, Tagashira S, Fujiwara M, et al. Cbfa1 isoforms exert functional differences in osteoblast differentiation[J]. J Biol Chem, 1999, 274(11):6972-6978.
[23] Pivonka P, Zimak J, Smith DW, et al. Theoretical investigation of the role of the RANK-RANKL-OPG system in bone remodeling[J]. J Theor Biol, 2010, 262(2):306-316. DOI:10.1016/j.jtbi.2009.09.021.
[24] Hodge JM, Collier FM, Pavlos NJ, et al. M-CSF potently augments RANKL-induced resorption activation in mature human osteoclasts[J/OL]. PLoS One, 2011, 6(6):e21462[2018-01-24]. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021462. DOI:10.1371/journal.pone.0021462.
[25] 韩英, 杨冰, 唐泉, 等. 电离辐射对原代成骨细M-CSF表达的影响[J]. 国际放射医学核医学杂志, 2013, 37(1):5-8. DOI:10.3760/cma.j.issn.1673-4114.2013.01.002. Han Y, Yang B, Tang Q, et al. Effects of radiation on macrophage colony stimulating factor in primary osteoblasts[J]. Int J Radiat Med Nucl Med, 2013, 37(1):5-8.

相似文献/References:

[1]徐畅,方连英,孔阳阳,等.沉默BLAP75基因对电离辐射诱导DNA损伤的影响[J].国际放射医学核医学杂志,2016,40(4):244.[doi:10.3760/cma.j.issn.1673-4114.2016.04.001]
 Xu Chang,Fang Lianying,Kong Yangyang,et al.Effects of silencing BLAP75 on DNA damage induced by ionizing radiation[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(2):244.[doi:10.3760/cma.j.issn.1673-4114.2016.04.001]
[2]王璐,李晴,徐畅,等.sirna干扰sirt1对辐射后il-6表达的影响[J].国际放射医学核医学杂志,2015,39(5):423.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 017]
 wang lu,li Qing,xu chang,et al.effect of sirt1 sirna interference on the expression of il-6 after radiation[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(2):423.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 017]
[3]王芹,王敬敏,徐畅,等.沉默XRCC2基因表达联合电离辐射对结肠癌细胞增殖能力的影响[J].国际放射医学核医学杂志,2015,39(4):282.[doi:10.3760/cma.j.issn.1673-4114.2015.04.002]
 Wang Qin,Wang Jingmin,Xu Chang,et al.The effect of silencing XRCC2 gene combined with ionizing radiation on growth of colorectal cancer cells[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(2):282.[doi:10.3760/cma.j.issn.1673-4114.2015.04.002]
[4]路璐,李德冠,张俊伶,等.RNA干扰沉默p16基因对小鼠胚胎成纤维细胞衰老的影响[J].国际放射医学核医学杂志,2014,38(5):281.[doi:10.3760/cma.j.issn.1673-4114.2014.05.001]
 Lu Lu,Li De-guan,Zhang Jun-ling,et al.Application of RNA interference vector targeting mouse p16 gene in γ-irradiation-induced mouse embryonic fibroblast[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(2):281.[doi:10.3760/cma.j.issn.1673-4114.2014.05.001]
[5]徐畅,王彦,杜利清,等.shRNA干扰沉默Net1基因对电离辐射损伤反应的影响[J].国际放射医学核医学杂志,2013,37(3):135.[doi:10.3760/cma.j.issn.1673-4114.2013.03.002]
 XU Chang,WANG Yan,DU Li-qing,et al.The effects of short hairpin RNA-mediated silencing Net1 on ionizing radiation-induced damage responses[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(2):135.[doi:10.3760/cma.j.issn.1673-4114.2013.03.002]
[6]王小春,刘金剑,王月英,等.SKP2表达对食管癌细胞辐射敏感性的影响[J].国际放射医学核医学杂志,2012,36(2):105.[doi:10.3760/cma.j.issn.1673-4114.2012.02.012]
 WANG Xiao-chun,LIU Jin-Jian,WANG Yue-ying,et al.Effects of SKP2 expression on radio-sensitivity of esophageal carcinoma[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(2):105.[doi:10.3760/cma.j.issn.1673-4114.2012.02.012]

备注/Memo

备注/Memo:
收稿日期:2018-01-25。
基金项目:国家自然科学基金(81673106);天津市自然科学基金(14JCYBJC26700、16JCQNJC12100);中国医学科学院医学与健康科技创新工程项目(2017-12M-1-012)
通讯作者:龙伟,Email:longwei@irm-cams.ac.cn
更新日期/Last Update: 2018-05-09