[1]李航,姜勉,樊赛军.长链非编码RNA NBR2对乳腺癌细胞放射敏感性的影响[J].国际放射医学核医学杂志,2018,(2):121-128.[doi:10.3760/cma.j.issn.1673-4114.2018.02.005]
 Li Hang,Jiang Mian,Fan Saijun.Effect of long non-coding RNA NBR2 on the radiosensitivity of breast cancer cells[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(2):121-128.[doi:10.3760/cma.j.issn.1673-4114.2018.02.005]
点击复制

长链非编码RNA NBR2对乳腺癌细胞放射敏感性的影响(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
期数:
2018年第2期
页码:
121-128
栏目:
基础研究
出版日期:
2018-05-09

文章信息/Info

Title:
Effect of long non-coding RNA NBR2 on the radiosensitivity of breast cancer cells
作者:
李航 姜勉 樊赛军
300192 天津, 中国医学科学院北京协和医学院放射医学研究所, 天津市放射医学与分子核医学重点实验室
Author(s):
Li Hang Jiang Mian Fan Saijun
Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300192, China
关键词:
RNA长链非编码乳腺肿瘤细胞增殖辐射耐受性BRCA1相邻基因2
Keywords:
RNA long noncodingBreast neoplasmsCell proliferationRadiation toleranceNeighbour of BRCA1 gene 2
DOI:
10.3760/cma.j.issn.1673-4114.2018.02.005
摘要:
目的 探讨长链非编码RNA (lncRNA) BRCA1相邻基因2(NBR2)(BRCA1为乳腺癌易感基因1)对乳腺癌MCF-7和MDA-MB-231细胞放射敏感性的影响。方法 根据处理方法的不同,分别按以下方式将乳腺癌细胞MCF-7和MDA-MB-231进行分组。(1)分为3组:空白对照组、4 Gy γ射线照射组和8 Gy γ射线照射组,采用实时定量PCR检测lncRNA NBR2的表达。(2)分为4组:空白对照组、NBR2转染组、4 Gy γ射线照射组以及NBR2转染+γ射线照射联合组,采用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(MTT)方法来检测细胞增殖情况。(3)分为3组:空白对照组、NBR2单独转染组、NBR2+B细胞淋巴瘤2(BCL2)共转染组,对3组细胞进行不同剂量的γ射线照射,并采用MTT和克隆形成实验方法检测细胞生长情况。采用Student t-test对数据进行统计学分析,P<0.05表示差异有统计学意义。结果 实时定量PCR结果显示,与空白对照组相比,4 Gy γ射线照射和8 Gy γ射线照射能够显著下调lncRNA NBR2的表达水平,差异有统计学意义(MCF-7:t=10.75、11.17,MDA-MB-231:t=11.22、12.31,均P<0.01)。MTT实验结果显示,与4 Gy γ射线照射组相比,NBR2转染+γ射线照射联合组的乳腺癌细胞增殖率明显降低,差异有统计学意义(MCF-7:t=10.55,MDA-MB-231:t=11.97,均P<0.01)。同时,lncRNA NBR2过表达可以明显下调BCL2的mRNA及蛋白表达水平。另外,与NBR2单独转染组相比,NBR2+BCL2共转染组中NBR2对细胞增殖的影响显著降低,差异有统计学意义(MCF-7:t=10.87,MDA-MB-231:t=11.37,均P<0.01)。结论 辐照可以诱导lncRNA NBR2的表达水平降低,人为过表达NBR2能够抑制BCL2的蛋白表达水平,进而降低乳腺癌MCF-7和MDA-MB-231细胞的增殖能力,同时增强其放射敏感性。
Abstract:
Objective To explore the effects of long non-coding RNA neighbour of BRCA1 gene2(NBR2) on the radiosensitivity of breast cancer MCF-7 and MDA-MB-231 cells. Method According to different treatment methods, breast cancer MCF-7 and MDA-MB-231 cells were divided into the following groups:(1) three groups including control group, 4 Gy γ ray irradiation group, and 8 Gy γ ray irradiation group, then the expression level of NBR2 was tested by real-time quantitative PCR(qRT-PCR) analysis; (2) four groups including control group, NBR2 transfection group, 4 Gy γ ray irradiation group, and NBR2 transfection+γ ray irradiation group, then the proliferation of breast cancer MCF-7 and MDA-MB-231 cells was detected by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide(MTT) assays; (3) three groups including control group, NBR2 transfection group, and NBR2+B-cell lymphoma-2(BCL2) transfection group, and the cells were irradiated with different doses of γ ray, then the proliferation was detected by MTT and clonogenic assay. Statistical significance of the results was determined by SPSS statistical software and analyzed by student’s t-test. P<0.05 was considered statistically significant. Results qRT-PCR analysis revealed that compared with that in the control group, the expression of NBR2 was decreased significantly in breast cancer MCF-7 and MDA-MB-231 cells treated with γ ray irradiation(MCF-7:t=10.75, 11.17, MDA-MB-231:t=11.22, 12.31, all P<0.01). MTT assays showed that compared with the cells irradiated alone, the breast cancer MCF-7 and MDA-MB-231 cells irradiated in the presence of NBR2 had significantly decreased proliferation (MCF-7: t=10.55, MDA-MB-231:t=11.97, both P<0.01). NBR2 could also down-regulate the mRNA and protein level of BCL2 in these cells. The enhanced BCL2 expression significantly reduced the NBR2 inhibition of breast cancer MCF-7 and MDA-MB-231 cell proliferation after irradiation as compared with that of NBR2 alone (MCF-7:t=10.87, MDA-MB-231:t=11.37, both P<0.01). Conclusions Irradiation could decrease the expression level of NBR2. The overexpression of NBR2 could down-regulate the BCL2 level and suppress the proliferation of breast cancer MCF-7 and MDA-MB-231 cells, thus enhancing the radiosensitivity of breast cancer cells.

参考文献/References:

[1] Chien LH, Tseng TJ, Chen CH, et al. Comparison of annual percentage change in breast cancer incidence rate between Taiwan and the United States-A smoothed Lexis diagram approach[J]. Cancer Med, 2017, 6(7):1762-1775. DOI:10.1002/cam4.1102.
[2] Debourdeau P, Espié M, Chevret S, et al. Incidence, risk factors, and outcomes of central venous catheter-related thromboembolism in breast cancer patients:the CAVECCAS study[J]. Cancer Med, 2017, 6(11):2732-2744. DOI:10.1002/cam4.1201.
[3] Wang S, Li Y, Li C, et al. Distribution and Determinants of Unmet Need for Supportive Care Among Women with Breast Cancer in China[J]. Med Sci Monit, 2018, 24:1680-1687. DOI:10.12659/MSM.905282.
[4] Terry MB, Bradbury A. Family-based Breast Cancer Prevention Efforts in Adolescence[J]. Pediatrics, 2016, 138(Suppl 1):S78-S80. DOI:10.1542/peds.2015-4268K.
[5] Todhunter ME, LaBarge MA. Cell and Tissue Biology Paves a Path to Breast Cancer Prevention[J]. Trends Cancer, 2017, 3(5):313-315. DOI:10.1016/j.trecan.2017.03.001.
[6] Arenas M, García-Heredia A, Cabré N, et al. Effect of radiotherapy on activity and concentration of serum paraoxonase-1 in breast cancer patients[J/OL]. PLoS One, 2017, 12(11):e0188633[2018-01-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5703554. DOI:10.1371/journal.pone.0188633.
[7] EER H, Small W. Intraoperative Radiotherapy for Breast Cancer[J]. Front Oncol, 2017, 7:317. DOI:10.3389/fonc.2017.00317.
[8] Saiki H, Petersen IA, Scott CG, et al. Risk of Heart Failure With Preserved Ejection Fraction in Older Women After Contemporary Radiotherapy for Breast Cancer[J]. Circulation, 2017, 135(15):1388-1396. DOI:10.1161/CIRCULATIONAHA.116.025434.
[9] Zhou Y, Wang C, Liu X, et al. Long non-coding RNA HOTAIR enhances radioresistance in MDA-MB231 breast cancer cells[J]. Oncol Lett, 2017, 13(3):1143-1148. DOI:10.3892/ol.2017.5587.
[10] Qi XS, Pajonk F, McCloskey S, et al. Radioresistance of the breast tumor is highly correlated to its level of cancer stem cell and its clinical implication for breast irradiation[J]. Radiother Oncol, 2017, 124(3):455-461. DOI:10.1016/j.radonc.2017.08.019.
[11] Roeszler KN, Itman C, Sinclair AH, et al. The long non-coding RNA, MHM, plays a role in chicken embryonic development, including gonadogenesis[J]. Dev Biol, 2012, 366(2):317-326. DOI:10.1016/j.ydbio.2012.03.025.
[12] Luan W, Zhou Z, Ni X, et al. Long non-coding RNA H19 promotes glucose metabolism and cell growth in malignant melanoma via miR-106a-5p/E2F3 axis[J]. J Cancer Res Clin Oncol, 2018, 144(3):531-542. DOI:10.1007/s00432-018-2582-z.
[13] Li T, Liu Y, Xiao H, et al. Long non-coding RNA TUG1 promotes cell proliferation and metastasis in human breast cancer[J]. Breast Cancer, 2017, 24(4):535-543. DOI:10.1007/s12282-016-0736-x.
[14] Liu X, Gan B. lncRNA NBR2 modulates cancer cell sensitivity to phenformin through GLUT1[J]. Cell Cycle, 2016, 15(24):3471-3481. DOI:10.1080/15384101.2016.1249545.
[15] Xiao ZD, Liu X, Zhuang L, et al. NBR2:A former junk gene emerges as a key player in tumor suppression[J/OL]. Mol Cell Oncol, 2016, 3(4):e1187322[2018-01-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4972102. DOI:10.1080/23723556. 2016. 1187322.
[16] Liu X, Xiao ZD, Han L, et al. LncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress[J]. Nat Cell Biol, 2016, 18(4):431-442. DOI:10.1038/ncb3328.
[17] Secginli S, Nahcivan NO, Gunes G, et al. Interventions Promoting Breast Cancer Screening Among Turkish Women With Global Implications:A Systematic Review[J]. Worldviews Evid Based Nurs, 2017, 14(4):316-323. DOI:10.1111/wvn.12245.
[18] Yu C, Wang J. A Physical Mechanism and Global Quantification of Breast Cancer[J]. PLoS One, 2016, 11(7):e0157422[2018-01-27]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4943646. DOI:10.1371/journal.pone.0157422.
[19] 李敏, 孟庆慧, 胡旭东, 等. B细胞易位基因2的表达水平对肿瘤细胞放射敏感性的影响[J]. 国际放射医学核医学杂志, 2013, 37(3):129-134. DOI:10.3760/cma.j.issn.1673-4114.2013.03.001. Li M, Meng QH, Hu XD, et al. Effect of B-cell translocation gene 2 alteration on radiosensitivity of cancer cells[J]. Int J Radiat Med Nucl Med,2013,37(3):129-134.
[20] Chen MY, Chen YS, Hu LJ, et al. The end-of-treatment telephone response and prognosis of post-radiotherapy nasopharyngeal carcinoma patients in southern China[J]. Int J Clin Exp Med, 2015, 8(9):16564-16570.
[21] Zhang Y, Hui ZG, Zhang JH, et al. Survey on the use of radiotherapy to treat early breast cancer following breast-conserving surgery in China[J]. Tumori, 2014, 100(5):512-517. DOI:10.1700/1660.18166.
[22] Kim YG, Yoon YN, Choi HS, et al. Breast cancer stem cells in HER2-negative breast cancer cells contribute to HER2-mediated radioresistance and molecular subtype conversion:clinical implications for serum HER2 in recurrent HER2-negative breast cancer[J]. Oncotarget, 2018, 9(5):5811-5822. DOI:10.18632/oncotarget.23528.
[23] Sims EK, Lakhter AJ, Anderson-Baucum E, et al. MicroRNA 21 targets BCL2 mRNA to increase apoptosis in rat and human beta cells[J]. Diabetologia, 2017, 60(6):1057-1065. DOI:10.1007/s00125-017-4237-z.
[24] Vartak SV, Hegde M, Iyer D, et al. A novel inhibitor of BCL2, Disarib abrogates tumor growth while sparing platelets, by activating intrinsic pathway of apoptosis[J]. Biochem Pharmacol, 2016, 122:10-22. DOI:10.1016/j.bcp.2016.09.028.
[25] Min KW, Kim DH, Do SI, et al. High Ki67/BCL2 index is associated with worse outcome in early stage breast cancer[J]. Postgrad Med J, 2016, 92(1094):707-714. DOI:10.1136/postgradmedj-2015-133531.
[26] Bouchalova K, Kharaishvili G, Bouchal J, et al. Triple negative breast cancer-BCL2 in prognosis and prediction. Review[J]. Curr Drug Targets, 2014, 15(12):1166-1175.
[27] Eom YH, Kim HS, Lee A, et al. BCL2 as a Subtype-Specific Prognostic Marke r for Breast Cancer[J]. J Breast Cancer, 2016, 19(3):252-260. DOI:10.4048/jbc.2016.19.3.252.
[28] Kordezangeneh M, Irani S, Mirfakhraie R, et al. Regulation of BAX/BCL2 gene expression in breast cancer cells by docetaxel-loaded human serum albumin nanoparticles[J]. Med Oncol, 2015, 32(7):208. DOI:10.1007/s12032-015-0652-5.
[29] 姜勉, 董佳丽, 李航, 等. HBXIP蛋白表达对宫颈癌细胞的增殖能力及放射敏感性的影响[J]. 国际放射医学核医学杂志, 2017, 41(5):340-346. DOI:10.3760/cma.j.issn.1673-4114.2017.05.007. Jiang M, Dong JL, Li H, et al. Effects of HBXIP protein expression on the proliferation and radiosensitivity of cervical cancer cells[J]. Int J Radiat Med Nucl Med, 2017, 41(5):340-346.
[30] Azimian H, Dayyani M, MTB T, et al. Bax/Bcl-2 expression ratio in prediction of response to breast cancer radiotherapy[J]. Iran J Basic Med Sci, 2018, 21(3):325-332. DOI:10.22038/IJBMS.2018. 26179. 6429.
[31] Li JY, Li YY, Jin W, et al. ABT-737 reverses the acquired radioresistance of breast cancer cells by targeting Bcl-2 and Bcl-xL[J]. J Exp Clin Cancer Res, 2012, 31:102. DOI:10.1186/1756-9966-31-102.
[32] Abdel-Fatah TM, Perry C, Dickinson P, et al. Bcl2 is an independent prognostic marker of triple negative breast cancer (TNBC) and predicts response to anthracycline combination (ATC) chemotherapy (CT) in adjuvant and neoadjuvant settings[J]. Ann Oncol, 2013, 24(11):2801-2807. DOI:10.1093/annonc/mdt277.

相似文献/References:

[1]杜利清,刘强,王彦,等.Ku70对同源重组修复蛋白Rad51的调节作用[J].国际放射医学核医学杂志,2013,37(5):272.[doi:10.3760/cma.j.issn.1673-4114.2013.05.005]
 DU Li-qing,LIU Qiang,WANG Yan,et al.Regulation of homologous recombination repair protein Rad51 by Ku70[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(2):272.[doi:10.3760/cma.j.issn.1673-4114.2013.05.005]
[2]黄丽娟,陈宁,叶静,等.反义肽核酸对促甲状腺激素受体mRNA表达的影响[J].国际放射医学核医学杂志,2012,36(5):310.[doi:10.3760/cnla.j.issn.1673-4114.2012.05.011]
 HUANG Li-juan,CHEN Ning,YE Jing,et al.The effects of antisense peptide nucleic acid on the expression of thyroid stimulating hormone receptor mRNA[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(2):310.[doi:10.3760/cnla.j.issn.1673-4114.2012.05.011]
[3]姜勉,董佳丽,李航,等.HBXIP蛋白表达对宫颈癌细胞的增殖能力及放射敏感性的影响[J].国际放射医学核医学杂志,2017,41(5):340.[doi:10.3760/cma.j.issn.1673-4114.2017.05.007]
 Jiang Mian,Dong Jiali,Li Hang,et al.Effects of HBXIP protein expression on the proliferation and radiosensitivity of cervical cancer cells[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(2):340.[doi:10.3760/cma.j.issn.1673-4114.2017.05.007]
[4]陈双景,周平坤,王治东.电离辐射损伤相关长链非编码RNA研究进展[J].国际放射医学核医学杂志,2018,(2):161.[doi:10.3760/cma.j.issn.1673-4114.2018.02.011]
 Shuangjing,Zhou Pingkun,Wang Zhidong.Research advancement on long non-coding RNAs in ionizing radiation-induced damage[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(2):161.[doi:10.3760/cma.j.issn.1673-4114.2018.02.011]

备注/Memo

备注/Memo:
收稿日期:2018-01-27。
基金项目:科技部科研院所开发专项(2014EG150134);天津市科技支撑项目(14ZCZDSY00001);协和青年科研基金资助,中央高校基本科研业务费专项资金资助(2017310027)
通讯作者:樊赛军,Email:fansaijun@irm-cams.ac.cn
更新日期/Last Update: 2018-05-09