[1]张占文,胡平,唐刚华.肿瘤短链脂肪酸代谢PET显像剂研究进展[J].国际放射医学核医学杂志,2017,41(6):430-436.[doi:10.3760/cma.j.issn.1673-4114.2017.06.009]
 Zhang Zhanwen,Hu Ping,Tang Ganghua.Progress on short-chain fatty acid tumor molecular probes for PET imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(6):430-436.[doi:10.3760/cma.j.issn.1673-4114.2017.06.009]
点击复制

肿瘤短链脂肪酸代谢PET显像剂研究进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
41
期数:
2017年第6期
页码:
430-436
栏目:
综述
出版日期:
2017-12-05

文章信息/Info

Title:
Progress on short-chain fatty acid tumor molecular probes for PET imaging
作者:
张占文12 胡平2 唐刚华1
1. 510080 广州, 中山大学附属第一医院核医学科PET/CT中心;
2. 510655 广州, 中山大学附属第六医院核医学科PET/CT中心
Author(s):
Zhang Zhanwen12 Hu Ping2 Tang Ganghua1
1. PET/CT Center, Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China;
2. PET/CT Center, Department of Nuclear Medicine, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510655, China
关键词:
短链脂肪酸诊断分子探针正电子发射断层显像术
Keywords:
Short-chain fatty acidDiagnosisMolecular probesPositron-emission tomography
DOI:
10.3760/cma.j.issn.1673-4114.2017.06.009
摘要:
18F-FDG PET显像在临床上发挥着越来越重要的作用,但其在某些肿瘤的应用中存在一定的弊端,易产生假阳性和假阴性。脂肪酸代谢PET显像在脂类代谢显像中占有非常重要的地位,在一定程度上可弥补糖代谢的不足,能提高对肿瘤诊断的灵敏度和准确率。笔者就目前应用于临床前和临床研究中的肿瘤短链脂肪酸代谢PET显像剂进行综述。
Abstract:
18F-FDG PET plays an increasingly important role in clinical assessment. However, some false-positive and false-negative results for certain tumors have been achieved with 18F-FDG. Furthermore, fatty acid metabolic imaging is valuable in lipid-metabolism PET imaging. This technique compensates for the deficiency of 18F-FDG PET examination and improves the diagnostic sensitivity and accuracy of tumor detection. This review provides an overview of recent developments in the use of short-chain fatty acid radioactive probes in PET imaging.

参考文献/References:

[1] Currie E, Schulze A, Zechner R, et al. Cellular fatty acid metabolism and cancer[J]. Cell Metab, 2013, 18(2):153-161. DOI:10.1016/j.cmet.2013.05.017.
[2] Santos CR, Schulze A. Lipid metabolism in cancer[J]. FEBS J, 2012, 279(15):2610-2623. DOI:10.1111/j.1742-4658. 2012.08644.x.
[3] Gropler RJ. Recent advances in metabolic imaging[J]. J Nucl Cardiol, 2013, 20(6):1147-1172. DOI:10.1007/s12350-013-9786-z.
[4] 孙爱君,任茜,刘健,等. 11C-乙酸盐PET和PET/CT在肿瘤显像中的应用[J]. 国际放射医学核医学杂志, 2013, 37(4):243-247. DOI:10.3760/cma.j.issn.1673-4114.2013.04.013. Sun AJ, Ren Q, Liu J, et al. The application of 11C-acetate PET and PET-CT for tumors[J]. Int J Radiat Med Nucl Med, 2013, 37(4):243-247.
[5] Yoshii Y, Furukawa T, Saga T, et al. Acetate/acetyl-CoA metabolism associated with cancer fatty acid synthesis:overview and application[J]. Cancer Lett, 2015, 356(2 Pt A):211-216. DOI:10.1016/j.canlet.2014.02.019.
[6] Yoshii Y, Furukawa T, Oyama N, et al. Fatty acid synthase is a key target in multiple essential tumor functions of prostate cancer:uptake of radiolabeled acetate as a predictor of the targeted therapy outcome[J/OL]. PLoS One, 2013, 8(5):e64570[2017-06-28]. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0064570. DOI:10.1371/journal.pone.0064570.
[7] Zaytseva YY, Elliott VA, Rychahou P, et al. Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer[J]. Carcinogenesis, 2014, 35(6):1341-1351. DOI:10.1093/carcin/bgu042.
[8] Plathow C, Weber WA. Tumor cell metabolism imaging[J]. J Nucl Med, 2008, 49 suppl 2:43S-59S. DOI:10.2967/jnumed.107. 045930.
[9] Agostini M, Almeida LY, Bastos DC, et al. The fatty acid synthase inhibitor orlistat reduces the growth and metastasis of orthotopic tongue oral squamous cell carcinomas[J]. Mol Cancer Ther, 2014, 13(3):585-595. DOI:10.1158/1535-7163.MCT-12-1136.
[10] Seguin F, Carvalho MA, Bastos DC, et al. The fatty acid synthase inhibitor orlistat reduces experimental metastases and angiogenesis in B16-F10 melanomas[J]. Br J Cancer, 2012, 107(6):977-987.DOI:10.1038/bjc.2012.355.
[11] Brown M, Marshall DR, Sobel BE, et al. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate[J]. Circulation, 1987, 76(3):687-696. DOI:10.1161/01.CIR.76.3.687.
[12] Henes CG, Bergmann SR, Walsh MN, et al. Assessment of myocardial oxidative metabolic reserve with positron emission tomography and carbon-11 acetate[J]. J Nucl Med, 1989, 30(9):1489-1499.
[13] Park JW, Kim JH, Kim SK, et al. A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma[J]. J Nucl Med, 2008, 49(12):1912-1921.DOI:10.2967/jnumed.108.055087.
[14] Huo L, Dang Y, Lv J, et al. Application of dual phase imaging of 11C-acetate positron emission tomography on differential diagnosis of small hepatic lesions[J/OL]. PLoS One, 2014, 9(5):e96517[2016-06-28]. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096517. DOI:10.1371/journal.pone.0096517.
[15] Salem N, Kuang Y, Wang F, et al. PET imaging of hepatocellular carcinoma with 2-deoxy-2[18F] fluoro-D-glucose, 6-deoxy-6[18F]fluoro-D-glucose,[1-11C]-acetate and[N-methyl-11C]-choline[J]. Q J Nucl Med Mol Imaging, 2009, 53(2):144-156.
[16] Shreve P, Chiao PC, Humes HD, et al. Carbon-11-acetate PET imaging in renal disease[J]. J Nucl Med, 1995, 36(9):1595-1601.
[17] Oyama N, Okazawa H, Kusukawa N, et al. 11C-Acetate PET imaging for renal cell carcinoma[J]. Eur J Nucl Med Mol Imaging, 2009, 36(3):422-427. DOI:10.1007/s00259-008-0981-0.
[18] 霍力, 周前, 吴战宏, 等. 11C-乙酸盐PET显像在肾脏肿瘤诊断中的作用[J]. 中华核医学杂志, 2006, 26(4):205-208. DOI:10.3760/cma.j.issn.2095-2848. 2006.04.003. Huo L, Zhou Q,Wu ZH, et al. The role of 11C-acetate PET imaging for diagnosis of renal cancer[J]. Chin J Nucl Med, 2006, 26(4):205-208.
[19] Oyama N, Akino H, Kanamaru H, et al. 11C-acetate PET imaging of prostate cancer[J]. J Nucl Med, 2002, 43(2):181-186.
[20] Albrecht S, Buchegger F, Soloviev D, et al. 11C-acetate PET in the early evaluation of prostate cancer recurrence[J]. Eur J Nucl Med Mol Imaging, 2007, 34(2):185-196. DOI:10.1007/s00259-006-0163-x.
[21] Brogsitter C, Zöphel K, Kotzerke J. 18F-Choline, 11C-choline and 11C-acetate PET/CT:comparative analysis for imaging prostate cancer patients[J]. Eur J Nucl Med Mol Imaging, 2013, 40 suppl 1:S18-27. DOI:10.1007/s00259-013-2358-2.
[22] Tang G, Tang X, Wang M, et al. A simple and rapid automated radiosynthesis of[18F]fluoroacetate[J]. J Labelled Compd Radiopharm, 2008, 51(7):297-301. DOI:10.1002/jlcr.1520.
[23] Ponde DE, Dence CS, Oyama N, et al. 18F-fluoroacetate:a potential acetate analog for prostate tumor imaging-in vivo evaluation of 18F-fluoroacetate versus 11C-acetate[J]. J Nucl Med, 2007, 48(3):420-428.
[24] Lindhe O, Sun A,Ulin J, et al.[18F] Fluoroacetate is not a functional analogue of[11C]acetate in normal physiology[J]. Eur J Nucl Med Mol Imaging, 2009, 36:1453-1459. DOI:10.1007/s00259-009-1128-7.
[25] Matthies A, Ezziddin S, Ulrich EM, et al. Imaging of prostate cancer metastases with 18F-fluoroacetate using PET/CT[J]. Eur J Nucl Med Mol Imaging, 2004, 31(5):797. DOI:10.1007/s00259-003-1437-1.
[26] Liu RS,Chou TK,Chang CH, et al. Biodistribution, pharmacokinetics and PET imaging of[18F]FMISO,[18F]FDG and[18F]FAc in a sarcoma-and inflammation-bearing mouse model[J]. Nucl Med Biol, 2009, 36(3):305-312. DOI:10.1016/j.nucmedbio.2008.12.011.
[27] 周硕, 朱庆国, 叶烈夫, 等. 18F-氟乙酸联合18F-FDG PET/CT显像在肾肿瘤鉴别诊断中的价值[J]. 大连医科大学学报, 2016, 38(4):340-343, 360. DOI:10.11724/jdmu.2016.04.06. Zhou S, Zhu QG, Ye LF, et al. Value of 18F-flunoroacetate combined with 18F-fluorodeoxyglucose in differential diagnosis of renal masses[J]. J Dalian Med Univ, 2016, 38(4):340-343, 360.
[28] Takemoto K, Hatano E, Nishii R, et al. Assessment of[18F]-fluoroacetate PET/CT as a tumor-imaging modality:preclinical study in healthy volunteers and clinical evaluation in patients with liver tumor[J]. Ann Nucl Med, 2014, 28(4):371-380. DOI:10.1007/s12149-014-0823-z.
[29] Ho CL, Cheung MK, Chen S, et al.[18F] fluoroacetate positron emission tomography for hepatocellular carcinoma and metastases:an alternative tracer for[11C] acetate?[J]. Mol Imaging, 2012, 11(3):229-239. DOI:10.2310/7290. 2011.00043.
[30] Yoshimoto M, Waki A, Yonekura Y, et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation:acetate metabolism in tumor cells[J]. Nucl Med Biol, 2001, 28(2):117-122. DOI:10.1016/S0969-8051(00)00195-5.
[31] Pillarsetty N, Punzalan B, Larson SM. 2-18F-Fluoropropionic acid as a PET imaging agent for prostate cancer[J]. J Nucl Med, 2009, 50(10):1709-1714. DOI:10.2967/jnumed.109.064212.
[32] 党永红, 蔡炯, 王玲, 等. 2-18F-氟代丙酸的自动化合成及其Micro PET肺癌小鼠显像[J]. 中国医学装备, 2015, 12(6):46-49. DOI:10.3969/J.ISSN.1672-8270. 2015.06.015. Dang YH, Cai J, Wang L, et al. The automated synthesis of 2-18F-fluoropropoinic acid and micro PET imaging in mice of lung cancer[J]. China Med Equip, 2015,12(6):46-49.
[33] Wang HL, Hu KZ, Tang GH, et al. Simple and efficient automated radiosynthesis of 2-18F-fluoropropionic acid using solid-phase extraction cartridges purification[J]. J Label Compd Radiopharm,2012, 55(2):366-370. DOI:10.1002/jlcr.2952.
[34] 党永红, 蔡炯, 李欣, 等. 2-18F-氟丙酸在荷乳腺癌小鼠模型中的显像性能和体内分布[J]. 中国医学科学院学报, 2015, 37(3):320-324. DOI:10.3881/j.issn.1000-503X.2015.03.014. Dang YH, Cai J, Li X, et al. Imaging potential and biodistribution in vivo of 2-[18F] fluoropropionic acid in breast cancer-bearing mice[J]. Acta Academiae Medicinae Sinicae, 2015, 37(3):320-324.
[35] Pisaneschi F, Witney TH, Iddon L, et al. Synthesis of[18F] fluoro-pivalic acid:an improved PET imaging probe for the fatty acid synthesis pathway in tumours[J]. Med Chem Commun, 2013, 4(10):1350-1353. DOI:10.1039/c3md00169e.
[36] Witney TH, Pisaneschi F, Alam IS, et al. Preclinical evaluation of 3-18F-fluoro-2, 2-dimethylpropionic acid as an imaging agent for tumor detection[J]. J Nucl Med, 2014, 55(9):1506-1512. DOI:10.2967/jnumed.114.140343.
[37] Brass EP. Pivalate-generating prodrugs and carnitine homeostasis in man[J]. Pharmacol Rev, 2002, 54(4):589-598. DOI:10.1124/pr.54.4.589.

相似文献/References:

[1]陈超坤,刘亮,傅飞先,等.囊性胸腺瘤和囊性畸胎瘤的影像学特征及鉴别诊断[J].国际放射医学核医学杂志,2016,40(1):31.[doi:10.3760/cma.j.issn.1673-4114.2016.01.007]
 Chen Chaokun,Liu Liang,Fu Feixian,et al.Imaging features and differential diagnosis of cystic thymoma and cystic teratoma[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):31.[doi:10.3760/cma.j.issn.1673-4114.2016.01.007]
[2]孙昱,符达,刘兴党.卵巢癌循环肿瘤细胞的生物学特性及其临床应用进展[J].国际放射医学核医学杂志,2016,40(1):60.[doi:10.3760/cma.j.issn.1673-4114.2016.01.012]
 Sun Yu,Fu Da,Liu Xingdang.Progress in biological characteristics and clinical application of circulating tumor cells in ovarian cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):60.[doi:10.3760/cma.j.issn.1673-4114.2016.01.012]
[3]蒿崑,孙珊珊,赵斌.规范化应用影像学检查对乳腺疾病诊断价值的研究进展[J].国际放射医学核医学杂志,2016,40(1):70.[doi:10.3760/cma.j.issn.1673-4114.2016.01.014]
 Hao Kun,Sun Shanshan,Zhao Bin.The value of the standard application of medical imaging examination in the diagnosis of breast disease[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):70.[doi:10.3760/cma.j.issn.1673-4114.2016.01.014]
[4]唐令胜,刘朝晖,李红梅,等.低场磁共振DWI技术与常规MRI扫描对超急性脑梗死的诊断灵敏度的比较[J].国际放射医学核医学杂志,2016,40(3):187.[doi:10.3760/cma.j.issn.1673-4114.2016.03.006]
 Tang Lingsheng,Liu Zhaohui,Li Hongmei,et al.Comparison of the diagnostic sensitivity of low-field magnetic resonance diffusion weighted imaging technology and conventional MRI scanning for super acute cerebral infarction[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):187.[doi:10.3760/cma.j.issn.1673-4114.2016.03.006]
[5]刘惠惠,李险峰.放射性心脏损伤诊断和防治的临床研究进展[J].国际放射医学核医学杂志,2016,40(5):374.[doi:10.3760/cma.j.issn.1673-4114.2016.05.008]
 Liu Huihui,Li Xianfeng.Clinical research progress in diagnosis,prevention and treatment of radiation-induced heart disease[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(6):374.[doi:10.3760/cma.j.issn.1673-4114.2016.05.008]
[6]耿欣,宋其韬,肖世骞,等.CT技术诊断下肢动脉硬化闭塞症的应用进展[J].国际放射医学核医学杂志,2015,39(6):501.[doi:10.3760/cma.j.issn.1673-4114.2015.06.014]
 Geng Xin,Song Qitao,Xiao Shiqian,et al.Technology progress of computed tomography in the diagnosis for lower extremity arteriosclerosis obliterans[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(6):501.[doi:10.3760/cma.j.issn.1673-4114.2015.06.014]
[7]周文兰,吴湖炳,韩彦江,等.18F-FDG PET/CT对骨骼孤立性高代谢病灶的初步诊断价值[J].国际放射医学核医学杂志,2015,39(1):14.[doi:10.3760/cma.j.issn.1673-4114.2015.01.005]
 Zhou Wenlan,Wu Hubing,Han Yanjiang,et al.Preliminary study of 18F-FDG PET/CT in the diagnosis of solitary hypermetabolic lesion of bone[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(6):14.[doi:10.3760/cma.j.issn.1673-4114.2015.01.005]
[8]丛慧,梁军,林岩松.碘难治性分化型甲状腺癌的诊断与靶向治疗[J].国际放射医学核医学杂志,2015,39(1):25.[doi:10.3760/cma.j.issn.1673-4114.2015.01.007]
 Cong Hui,Liang Jun,Lin Yansong.Diagnosis and targeted therapy of radioactive iodine-refractory differentiated thyroid cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(6):25.[doi:10.3760/cma.j.issn.1673-4114.2015.01.007]
[9]刘斌,潘明志.BRAF基因突变对甲状腺乳头状癌诊治价值的研究进展[J].国际放射医学核医学杂志,2015,39(2):154.[doi:10.3760/cma.j.issn.1673-4114.2015.02.011]
 Liu Bin,Pan Mingzhi.Advances in value of BRAF gene mutation on the diagnosis and treatment of papillary thyroid cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(6):154.[doi:10.3760/cma.j.issn.1673-4114.2015.02.011]
[10]黄静,袁卫红.骨关节炎诊治方法新进展[J].国际放射医学核医学杂志,2014,38(1):64.[doi:10.3760/cma.j.issn 1673-4114.2014.01.013]
 Huang Jing,Yuan Weihong.The new progress of osteoarthritis treatment[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(6):64.[doi:10.3760/cma.j.issn 1673-4114.2014.01.013]

备注/Memo

备注/Memo:
收稿日期:2017-06-28。
基金项目:国家自然科学基金(81571704)
通讯作者:唐刚华,Email:gtang0224@126.com
更新日期/Last Update: 2017-12-05