[1]孟媛媛,杨福军,徐文清.乏氧诱导因子在疾病中作用机制的研究进展[J].国际放射医学核医学杂志,2017,41(5):347-352.[doi:10.3760/cma.j.issn.1673-4114.2017.05.008]
 Meng Yuanyuan,Yang Fujun,Xu Wenqing.Review of retinal receptors and molecular imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(5):347-352.[doi:10.3760/cma.j.issn.1673-4114.2017.05.008]
点击复制

乏氧诱导因子在疾病中作用机制的研究进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
41
期数:
2017年第5期
页码:
347-352
栏目:
综述
出版日期:
2017-09-25

文章信息/Info

Title:
Review of retinal receptors and molecular imaging
作者:
孟媛媛 杨福军 徐文清
300192 天津, 中国医学科学院北京协和医学院放射医学研究所, 天津市放射医学与分子核医学重点实验室
Author(s):
Meng Yuanyuan Yang Fujun Xu Wenqing
Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, China
关键词:
乏氧诱导因子辐射防护辐射损伤肿瘤炎症
Keywords:
Hypoxia inducible factorRadioprotectionRadiation damageNeoplasmsInflammation
DOI:
10.3760/cma.j.issn.1673-4114.2017.05.008
摘要:
乏氧诱导因子(HIF)是维持体内代谢平衡的一个重要因子,目前对其研究已成为热点。以往的研究证实,HIF与众多疾病都有着密切的关系,如炎症、肿瘤以及辐射损伤。笔者简述国内外有关HIF的研究成果,为HIF作为治疗靶点的深入研究提供新思路。
Abstract:
Retinal synthetic functions are adjusted by various neurotransmitters(e.g.,γ-aminobutyric acid, dopamine, 5 -hydroxytryptamine, and σ receptor) and can be visualized through nuclear receptor imaging. This technology has rapidly advanced in recent years with the development of nuclear medical equipment and agents. Retinal receptor imaging has become a pioneer medical technique that combines molecular biology, nuclear medicine, and ophthalmology. This article provides a brief introduction on the latest advances in retinal neurotransmitters and describes recent studies on retinal receptor molecular imaging.

参考文献/References:

[1] Schindler K, Bondeva T, Schindler C, et al. Preconditioned suppression of prolyl-hydroxylases attenuates renal injury but increases mortality in septic murine models[J]. Nephrol Dial Transplant, 2016, 31(7):1100-1113. DOI:10.1093/ndt/gfv442.
[2] Maxwell PH, Eckardt KU. HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond[J]. Nat Rev Nephrol, 2016, 12(3):157-168. DOI:10.1038/nrneph.2015.193.
[3] Tambuwala MM, Cummins EP, Lenihan CR, et al. Loss of prolyl hydroxylase-1 protects against colitis through reduced epithelial cell apoptosis and increased barrier function[J]. Gastroenterology, 2010, 139(6):2093-2101. DOI:10.1053/j.gastro.2010.06.068.
[4] Sunkari VG, Lind F, Botusan IR, et al. Hyperbaric oxygen therapy activates hypoxia-inducible factor 1(HIF-1), which contributes to improved wound healing in diabetic mice[J]. Wound Repair Regen, 2015, 23(1):98-103. DOI:10.1111/wrr.12253.
[5] Tang M, Tian Y, Li D, et al. TNF-alpha mediated increase of HIF-1 alpha inhibits VASP expression, which reduces alveolar-capillary barrier function during acute lung injury (ALI)[J/OL]. PLoS One, 2014, 9(7):e1029672[2017-07-06]. https://www.ncbi.nlm.nih.gov/pubmed/25051011.DOI:10.1371/journal.pone.0102967.
[6] Li XP, Yang XY, Biskup E, et al. Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepato-cellular carcinoma[J]. Oncotarget, 2015, 6(26):2880-2889. DOI:10.18632/oncotarget.4412.
[7] Koh MY, Powis G. Passing the baton:the HIF switch[J]. Trends Biochem Sci, 2012, 37(9):364-372. DOI:10.1016/j.tibs.2012.06. 004.
[8] Chan MC, Holt-Martyn JP, Schofield CJ, et al. Pharmacological targeting of the HIF hydroxylases-A new field in medicine development[J]. Mol Aspects Med, 2016, 47-48:54-75. DOI:10. 1016/j.mam.2016.01.001.
[9] He W, Huang L, Shen X, et al. Relationship between RSUME and HIF-1 alpha/VEGF-A with invasion of pituitary adenoma[J]. Gene, 2017, 603:54-60. DOI:10.1016/j.gene.2016.12.012.
[10] Feng CC, Lin CC, Lai YP, et al. Hypoxia suppresses myocardial survival pathway through HIF-1 alpha-IGFBP-3-dependent signaling and enhances cardiomyocyte autophagic and apoptotic effects mainly via FoxO3a-induced BNIP3 expression[J]. Growth Factors, 2016, 34(3/4):73-86. DOI:10.1080/08977194. 2016. 1191480.
[11] Colgan SP, Eltzschig HK. Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery[J]. Annu Rev Physiol, 2012, 74:153-175.DOI:10.1146/annurev-physiol-020911-153230.
[12] Clambey ET, McNamee EN, Westrich JA, et al. Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa[J/OL]. Proc Natl Acad Sci, 2012, 109(41):E2784-2793[2017-07-10]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478644/.DOI:10.1073/pnas.1202366109.
[13] Colgan SP, Taylor CT. Hypoxia:an alarm signal during intestinal inflammation[J]. Nat Rev Gastroenterol Hepatol, 2010, 7(5):281-287. DOI:10.1038/nrgastro.2010.39.
[14] Eckle T, Hartmann K, Bonney S, et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia[J]. Nat Med, 2012, 18(5):774-782. DOI:10.1038/nm.2728.
[15] Cai ZQ, Luo LB, Zhan HW, et al. Hypoxia-inducible factor 1 is required for remote ischemic preconditioning of the heart[J]. Proc Natl Acad Sci USA, 2013, 110(43):17462-17467. DOI:10.1073/pnas.1317158110.
[16] Kontaki E, Boumpas DT, Tzardi M, et al. Aberrant function of myeloid-derived suppressor cells (MDSCs) in experimental colitis and in inflammatory bowel disease (IBD) immune responses[J]. Autoimmunity, 2017, 50(3):170-181. DOI:10.1080/08916934. 2017. 1283405.
[17] Marks DJ, Rahman FZ, Sewell GW, et al. Crohn’s disease:an immune deficiency state[J]. Clin Rev Allergy Immunol, 2010, 38(1):20-31. DOI:10.1007/s12016-009-8133-2.
[18] Campbell EL, Bruyninckx WJ, Kelly CJ, et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation[J]. Immunity, 2014, 40(1):66-77. DOI:10.1016/j.immuni.2013.11.020.
[19] Xue X, Ramakrishnan S, Anderson E, et al. Endothelial PAS domain protein 1 activates the inflammatory response in the intestinal epithelium to promote colitis in mice[J]. Gastroenterology, 2013, 145(4):831-841. DOI:10.1053/j.gastro.2013.07.010.
[20] Shah YM, Ito S, Morimura K, et al. Hypoxia-inducible factor augments experimental colitis through an MIF-dependent inflammatory signaling cascade[J/OL]. Gastroenterology, 2008, 134(7):2036-2048, 2048 e1-3[2017-07-06]. https://linkinghub.elsevier.com/retrieve/pii/S0016-5085(08)00440-X.DOI:10.1053/j.gastro.2008. 03.009.
[21] Thiel M, Chouker A, Ohta A, et al. Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury[J/OL]. PLoS Biol, 2005, 3(6):e174[2017-07-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1088279/.DOI:10.1371/journal.pbio.0030174.
[22] Eckle T, Brodsky K, Bonney M, et al. HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium[J/OL]. PLoS Biol, 2013, 11(9):e1001665[2017-07-06]. http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001665.DOI:10.1371/journal.pbio.1001665.
[23] Wang WW, Li ZZ, Wang W, et al. Enhanced renoprotective effect of HIF-1alpha modified human adipose-derived stem cells on cisplatin-induced acute kidney injury in vivo[J]. Sci Rep, 2015, 5:10851. DOI:10.1038/srep10851.
[24] Kapitsinou PP, Sano H, Michael M, et al. Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury[J]. J Clin Invest, 2014, 124(6):2396-2409. DOI:10.1172/JCI69073.
[25] Glover LE, Bowers BE, Saeedi BJ, et al. Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis[J]. Proc Natl Acad Sci USA, 2013, 110(49):19820-19825. DOI:10.1073/pnas.1302840110.
[26] Schneider M, Van Geyte K, Fraisl P, et al. Loss or silencing of the PHD1 prolyl hydroxylase protects livers of mice against ischemia/reperfusion injury[J/OL]. Gastroenterology, 2010, 138(3):1143-1154 e1-2[2017-07-10]. https://www.ncbi.nlm.nih.gov/pubmed/19818783/.DOI:10.1053/j.gastro.2009.09.057.
[27] Cheng K, Ho K, Stokes R, et al. Hypoxia-inducible factor-1alpha regulates beta cell function in mouse and human islets[J]. J Clin Invest, 2010, 120(6):2171-2183. DOI:10.1172/JCI35846.
[28] Maroni P, Matteucci E, Drago L, et al. Hypoxia induced E-cadherin involving regulators of Hippo pathway due to HIF-1alpha stabilization/nuclear translocation in bone metastasis from breast carcinoma[J]. Exp Cell Res, 2015, 330(2):287-299. DOI:10.1016/j.yexcr.2014. 10.004.
[29] Aquino-Gálvez A, González-ávila G, Delgado-Tello J. Effects of 2-methoxyestradiol on apoptosis and HIF-1α and HIF-2α expression in lung cancer cells under normoxia and hypoxia[J]. Oncol Rep, 2016, 35(1):577-583. DOI:10.3892/or.2015.4399.
[30] Doedens AL, Stockmann C, Rubinstein MP, et al. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression[J]. Cancer Res, 2010, 70(19):7465-7475. DOI:10.1158/0008-5472.CAN-10-1439.
[31] Takeda N, O’Dea EL, Doedens A, et al. Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis[J]. Genes, 2010, 24(5):491-501. DOI:10. 1101/gad.1881410.
[32] Krop I, Parker MT, Bloushtain-Qimron N, et al. HIN-1, an inhibitor of cell growth, invasion, and AKT activation[J]. Cancer Res, 2005, 65(21):9659-9669. DOI:10.1158/0008-5472. CAN-05-1663.
[33] Kim WY, Perera S, Zhou B, et al. HIF2α cooperates with RAS to promote lung tumorigenesis in mice[J]. J Clinical Investi-gation, 2009, 119(8):2160-2170.DOI:10.1172/jci38443.
[34] Koshiji M, Kageyama Y, Pete EA, et al. HIF-1alpha induces cell cycle arrest by functionally counteracting Myc[J]. EMBO J, 2004, 23(9):1949-1956. DOI:10.1038/sj.emboj.7600196.
[35] Gnanaprakasam JNR, Sherman JW, Wang R. MYC and HIF in shaping immune response and immune metabolism[J]. Cytokine Growth Factor Rev, 2017, 35:63-70. DOI:10.1016/j.cytogfr.2017. 03.004.
[36] Wang L, Xue M, Chung DC. c-Myc is regulated by HIF-2α in chronic hypoxia and influences sensitivity to 5-FU in colon cancer[J]. Oncotarget, 2016, 7(48):78910-78917. DOI:10.18632/oncotarget.12911.
[37] Minami T, Matsumura N, Sugimoto K, et al. Hypoxia-inducing factor (HIF)-1alpha-derived peptide capable of inducing cancer-reactive cytotoxic T lymphocytes from HLA-A24+ patients with renal cell carcinoma[J]. Int Immunopharmacol, 2017, 44:197-202. DOI:10.1016/j.intimp.2017.01.014.
[38] Olcina MM, Leszczynska KB, Senra JM, et al. H3K9me3 facilitates hypoxia-induced p53-dependent apoptosis through repression of APAK[J]. Oncogene, 2016, 35(6):793-799. DOI:10.1038/onc.2015. 134.
[39] Vousden KH, Prives C. Blinded by the Light:The Growing Complexity of p53[J]. Cell, 2009, 137(3):413-431. DOI:10.1016/j.cell.2009.04.037
[40] 张宇睿, 徐文清. 电离辐射对线粒体损伤的研究进展[J]. 国际放射医学核医学杂志, 2016, 40(2):154-158. DOI:10.3760/cma.j.issn.1673-4114.2016.02.014. Zhang YR, Xu WQ. Damages of ionizing radiation on mitochondria[J]Int J Radiat Med Nucl Med, 2016, 40(2):154-158.
[41] Bertout JA, Majmundar AJ, Gordan JD, et al. HIF2 inhibition promotes p53 pathway activity, tumor cell death, and radiation responses[J]. Proc Natl Acad Sci USA, 2008, 106(34):14391-14396. DOI:10.1073/pnas.0907357106.
[42] Roberts AM, Watson IR, Evans AJ, et al. Suppression of hypoxia-inducible factor 2alpha restores p53 activity via Hdm2 and reverses chemoresistance of renal carcinoma cells[J]. Cancer Res, 2009, 69(23):9056-9064. DOI:10.1158/0008-5472.CAN-09-1770.
[43] Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress[J]. Mol Cell, 2010, 40(2):310-322. DOI:10.1016/j.molcel.2010.09.026.
[44] Damjanovic SS, Ilic BB, Beleslin Cokic BB, et al. Tuberous sclerosis complex protein 1 expression is affected by VHL Gene alterations and HIF-1alpha production in sporadic clear-cell renal cell carcinoma[J]. Exp Mol Pathol, 2016, 101(3):323-331. DOI:10.1016/j.yexmp.2016.11.003.
[45] Pietrocola F, Izzo V, Niso-Santano M, et al. Regulation of autophagy by stress-responsive transcription factors[J]. Semin Cancer Biol, 2013, 23(5):310-322. DOI:10.1016/j.semcancer.2013.05.008.
[46] Su J, Li Z, Cui S, et al. The local HIF-2alpha/EPO pathway in the bone marrow is associated with excessive erythrocytosis and the increase in bone marrow microvessel density in chronic mountain sickness[J]. High Alt Med Biol, 2015, 16(4):318-330. DOI:10. 1089/ham.2015.0015.
[47] Winkler IG, Barbier V, Wadley R, et al. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo:serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches[J]. Blood, 2010, 116(3):375-385. DOI:10.1182/blood-2009-07-233437.
[48] Forristal CE, Winkler IG, Nowlan B, et al. Pharmacologic stabilization of HIF-1alpha increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation[J]. Blood, 2013, 121(5):759-769.DOI:10.1182/blood-2012-02-408419.
[49] Morgan JL, Ritchie LE, Crucian BE, et al. Increased dietary iron and radiation in rats promote oxidative stress, induce localized and systemic immune system responses, and alter colon mucosal environment[J]. FASEB J, 2014, 28(3):1486-1498.DOI:10.1096/fj.13-239418.
[50] Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells[J]. Nat Genet, 2008, 40(7):915-920.DOI:10.1038/ng.165.
[51] Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5[J]. Nature, 2007, 449(7165):1003-1007. DOI:10.1038/nature06196.
[52] Taniguchi CM, Miao YR, Diep AN, et al. PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2[J]. Sci Transl Med, 2014, 6(236):236ra64. DOI:10.1126/scitranslmed.3008523.

相似文献/References:

[1]贺欣,储小飞,罗丹,等.穿心莲药物对辐射损伤效应影响的初步研究[J].国际放射医学核医学杂志,2015,39(5):375.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 005]
 he xin,chu xiaofei,luo dan,et al.exploration of andrographolide effects on radiation injury[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(5):375.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 005]
[2]杨珂,唐波,于夕荣,等.甲状腺癌131i治疗病房的辐射屏蔽计算与评价[J].国际放射医学核医学杂志,2015,39(5):405.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 012]
 yang ke,tang bo,yu xirong,et al.shielding calculation and assessment in 131i therapy for thyroid cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(5):405.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 012]
[3]马永忠,王宏芳,冯泽臣,等.回旋加速器工作场所辐射水平的调查与分析[J].国际放射医学核医学杂志,2015,39(5):407.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 013]
 ma yongzhong,wang hongfang,feng zechen,et al.investigation and analysis of radiation dose levels in a cyclotron room[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(5):407.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 013]
[4]翟贺争,阮书州,焦玲,等.新型头部γ刀建设项目放射防护控制效果评价[J].国际放射医学核医学杂志,2015,39(5):412.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 014]
 zhai hezheng,ruan shuzhou,jiao ling,et al.radiological protection assessment of construction project based on a new type of head γ knife[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(5):412.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 014]
[5]郑玉明,程霞,郑棒.自制90Sr保持架在皮肤病敷贴治疗中的辐射防护作用[J].国际放射医学核医学杂志,2014,38(1):19.[doi:10.3760/cma.j.issn 1673-4114.2014.01.005]
 Zheng Yuming,Cheng Xia,Zheng Bang.Effects of serf-made 90Sr applicator retainer on radiation protection in treatment of skin disease[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(5):19.[doi:10.3760/cma.j.issn 1673-4114.2014.01.005]
[6]成钊汀,谭建.分化型甲状腺癌术后患者131I治疗的辐射剂量与防护[J].国际放射医学核医学杂志,2014,38(2):110.[doi:10.3760/cma.j.issn.1673-4114.2014.02.010]
 Cheng Zhaoting,Tan Jian.Radiation dose and protection of differentiated thyroid carcinoma postoperative patients with 131I treatment[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(5):110.[doi:10.3760/cma.j.issn.1673-4114.2014.02.010]
[7]李磊,涂彧.儿童CT检查的放射防护[J].国际放射医学核医学杂志,2012,36(1):41.[doi:10.3760/cma.j.issn.1673-4114.2012.01.011]
 LI Lei,TU Yu.The radiological protection of the children CT[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(5):41.[doi:10.3760/cma.j.issn.1673-4114.2012.01.011]
[8]龙伟,吴红英,张晓东,等.血必净辐射防护作用机制的计算机模拟研究[J].国际放射医学核医学杂志,2013,37(6):329.[doi:10.3760/cma.j.issn.1673-4114.2013.06.001]
 LONG Wei,WU Hong-ying,ZHANG Xiao-dong,et al.Computational study for mechanisms of radiation protection effects of Xuebijing[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(5):329.[doi:10.3760/cma.j.issn.1673-4114.2013.06.001]
[9]刘莉,杨景魁.125I粒子植入治疗非小细胞肺癌的护理及辐射防护[J].国际放射医学核医学杂志,2012,36(3):172.[doi:10.3760/cma.j.issn.1673-4114.2012.03.013]
 LIU Li,YANG Jing-kui.Radiation protective nursing intervene of 125I seed implantation in non-small cell lung cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2012,36(5):172.[doi:10.3760/cma.j.issn.1673-4114.2012.03.013]
[10]袁志斌,周志俊.核医学从业人员的职业暴露与放射防护[J].国际放射医学核医学杂志,2011,35(1):49.[doi:10.3760/cma.j.issn.1673-4114.2011.01.014]
 YUAN Zhi-bin,ZHOU Zhi-jun.Occupational exposure and radiation protection of nuclear medicine professional staffs[J].International Journal of Radiation Medicine and Nuclear Medicine,2011,35(5):49.[doi:10.3760/cma.j.issn.1673-4114.2011.01.014]

备注/Memo

备注/Memo:
收稿日期:2017-07-13。
基金项目:国家自然科学基金(81273005);天津市应用基础与前沿技术研究重点项目(14JCZDJC36400);中国医学科学院放射医学研究所发展基金(SF1528)
通讯作者:徐文清,Email:xuwenqing@irm-cams.ac.cn
更新日期/Last Update: 2017-09-25