[1]元龚骏,聂大红,唐刚华.临床用肿瘤细胞凋亡核医学显像剂研究进展[J].国际放射医学核医学杂志,2017,41(4):271-277.[doi:10.3760/cma.j.issn.1673-4114.2017.04.007]
 Yuan Gongjun,Nie Dahong,Tang Ganghua.Progress of nuclear medicine imaging agents for the clinical apoptosis imaging of tumors[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(4):271-277.[doi:10.3760/cma.j.issn.1673-4114.2017.04.007]
点击复制

临床用肿瘤细胞凋亡核医学显像剂研究进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
41
期数:
2017年第4期
页码:
271-277
栏目:
综述
出版日期:
2017-07-25

文章信息/Info

Title:
Progress of nuclear medicine imaging agents for the clinical apoptosis imaging of tumors
作者:
元龚骏1 聂大红12 唐刚华1
1. 510080, 广州, 中山大学附属第一医院, 广东省医用放射性药物转化应用工程技术研究中心核医学科;
2. 510080, 广州, 中山大学附属第一医院, 广东省医用放射性药物转化应用工程技术研究中心, 放疗科
Author(s):
Yuan Gongjun1 Nie Dahong12 Tang Ganghua1
1. Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals and Department of Nuclear Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China;
2. Department of Radiotherapy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
关键词:
细胞凋亡肿瘤分子探针体内成像
Keywords:
ApoptosisNeoplasmsMolecular probesIn vivo imaging
DOI:
10.3760/cma.j.issn.1673-4114.2017.04.007
摘要:
凋亡在肿瘤的发生、发展和治疗中发挥重要的作用,因此无创、动态监测凋亡已成为目前抗肿瘤治疗的研究热点。目前已有靶向外翻细胞膜磷脂显像剂99Tcm-4,5-2(硫代乙酰胺)戊酰-膜联蛋白V和99Tcm-联肼尼克酰胺-膜联蛋白V、靶向半胱天冬酶(caspases)显像剂18F-ICMT-11和18F-CP18、靶向凋亡细胞膜印迹显像剂18F-ML-10进入临床试验阶段,虽然它们存在局限性,但当与传统的成像手段比较时,它们在肿瘤的诊断、治疗监测上具备一定的优越性。因此,肿瘤凋亡显像剂具有广泛的应用前景。笔者就目前核医学肿瘤细胞凋亡显像剂在肿瘤诊疗中的研究进展进行综述。
Abstract:
Apoptosis plays a key role in the development and treatment of tumors;thus,the invasive dynamic monitoring of apoptosis is of considerable interest in the management of cancer.At present,99Tcm-BTAP-Annexin V,99Tcm-HYNIC-Annexin V,18F-ICMT-11,18F-CP18,and 18F-ML-10 have achieved clinical application.Despite their limitations,these agents are superior to conventional imaging technique in the diagnosis and therapeutic monitoring of cancer and can exhibit potential in clinical applications.This review provides an overview of the recent development in apoptosis imaging by using radionuclide-labeled tracers in the management of cancer.

参考文献/References:

[1] Green DR, Kroemer G. The pathophysiology of mitochondrial cell death[J]. Science, 2004, 305(5684):626-629. DOI:10.1126/science.1099320.
[2] Martinez MM, Reif RD, Pappas D. Detection of apoptosis:A review of conventional and novel techniques[J]. Anal Methods, 2010, 2(8):996-1004. DOI:10.1039/c0ay00247j.
[3] Liimatainen T, Hakumaki JM, Kauppinen RA, et al. Monitoring of gliomas in vivo by diffusion MRI and 1H MRS during gene therapy-induced apoptosis:interrelationships between water diffusion and mobile lipids. NMR Biomed, 2009, 22(3):272-279. DOI:10.1002/nbm.1320
[4] Czarnota GJ, Kolios MC, Abraham J, et al. Ultrasound imaging of apoptosis:high-resolution non-invasive monitoring of programmed cell death in vitro, in situ and in vivo[J]. Br J Cancer, 1999, 81(3):520-527. DOI:10.1038/sj.bjc.6690724.
[5] Petrovsky A, Schellenberger E, Josephson L, et al. Near-infrared fluorescent imaging of tumor apoptosis[J]. Cancer Res, 2003, 63(8):1936-1942.
[6] Shah K, Tang Y, Breakefield X, et al. Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo[J]. Oncogene, 2003, 22(44):6865-6872. DOI:10.1038/sj.onc.1206748.
[7] Zeng W, Wang X, Xu P, et al. Molecular imaging of apoptosis:from micro to macro[J]. Theranostics, 2015, 5(6):559-582. DOI:10.7150/thno.11548.
[8] Wang H, Wu Z, Li S, et al. Synthesis and evaluation of a radiolabeled bis-zinc(Ⅱ)-cyclen complex as a potential probe for in vivo imaging of cell death[J]. Apoptosis, 2017, 22(4):585-595. DOI:10.1007/s10495-017-1344-8.
[9] Sun T, Tang G, Tian H, et al. Positron emission tomography imaging of cardiomyocyte apoptosis with a novel molecule probe 18F FP-DPAZn2[J/OL]. Oncotarget, 2015, 6(31):30579-30591[2017-04-20]. http://www.ncbi.nlm.nih.gov/pubmed/26416423. DOI:10. 18632/oncotarget.5769.
[10] Yao S, Hu K, Tang G, et al. Positron emission tomography imaging of cell death with 18F FPDuramycin[J]. Apoptosis, 2014, 19(5):841-850. DOI:10.1007/s10495-013-0964-x.
[11] Lahorte CM, van de Wiele C, Bacher K, et al. Biodistribution and dosimetry study of 123I-rh-annexin V in mice and humans[J]. Nucl Med Commun, 2003, 24(8):871-880. DOI:10.1097/01.mnm.0000084585.29433.58.
[12] Stratton JR, Dewhurst TA, Kasina S, et al. Selective uptake of radiolabeled annexin V on acute porcine left atrial thrombi[J]. Circulation, 1995, 92(10):3113-3121.
[13] Kemerink GJ, Boersma HH, Thimister PW, et al. Biodistribution and dosimetry of 99mTc-BTAP-annexin-V in humans[J]. Eur J Nucl Med, 2001, 28(9):1373-1378.
[14] Blankenberg FG, Katsikis PD, Tait JF, et al. In vivo detection and imaging of phosphatidylserine expression during programmed cell death[J]. Proc Natl Acad Sci U S A, 1998, 95(11):6349-6354.
[15] Kemerink GJ, Liu X, Kieffer D, et al. Safety, biodistribution, and dosimetry of 99mTc-HYNIC-annexin V, a novel human recombinant annexin V for human application[J]. J Nucl Med, 2003, 44(6):947-952.
[16] van de Wiele C, Lahorte C, Vermeersch H, et al. Quantitative tumor apoptosis imaging using technetium-99m-HYNIC annexin V single photon emission computed tomography[J]. J Clin Oncol, 2003, 21(18):3483-3487. DOI:10.1200/JCO.2003.12.096.
[17] Vermeersch H, Ham H, Rottey S, et al. Intraobserver, interobserver, and day-to-day reproducibility of quantitative 99mTc-HYNIC annexin-V imaging in head and neck carcinoma[J]. Cancer Biother Radiopharm, 2004, 19(2):205-210. DOI:10.1089/108497804323071986.
[18] Vermeersch H, Loose D, Lahorte C, et al. 99mTc-HYNIC Annexin-V imaging of primary head and neck carcinoma[J]. Nucl Med Commun, 2004, 25(3):259-263.
[19] Loose D, Vermeersch H, de Vos F, et al. Prognostic value of 99mTc-HYNIC annexin-V imaging in squamous cell carcinoma of the head and neck[J]. Eur J Nucl Med Mol Imaging, 2008, 35(1):47-52. DOI:10.1007/s00259-007-0577-0.
[20] Rottey S, Slegers G, Van Belle S, et al. Sequential 99mTc-hydrazinonicotinamide-annexin V imaging for predicting response to che-motherapy[J]. J Nucl Med, 2006, 47(11):1813-1818.
[21] Rottey S, van den Bossche B, Slegers G, et al. Influence of chemo-therapy on the biodistribution of[99mTc] hydrazinonicotinamide annexin V in cancer patients[J]. Q J Nucl Med Mol Imaging, 2009, 53(2):127-132.
[22] Haas RL, de Jong D, Valdés Olmos RA, et al. In vivo imaging of radiation-induced apoptosis in follicular lymphoma patients[J]. Int J Radiat Oncol Biol Phys, 2004, 59(3):782-787. DOI:10.1016/j.ijrobp.2003.11.017.
[23] Hoebers FJ, Kartachova M, de Bois J, et al. 99mTc Hynic-rh-Annexin V scintigraphy for in vivo imaging of apoptosis in patients with head and neck cancer treated with chemoradiotherapy[J]. Eur J Nucl Med Mol Imaging, 2008, 35(3):509-518. DOI:10.1007/s00259-007-0624-x.
[24] Kartachova M, van Zandwijk N, Burgers S, et al. Prognostic significance of 99mTc Hynic-rh-annexin V scintigraphy during platinum-based chemotherapy in advanced lung cancer[J]. J Clin Oncol, 2007, 25(18):2534-2539. DOI:10.1200/JCO.2006.10.1337.
[25] Corsten MF, Hofstra L, Narula J, et al. Counting heads in the war against cancer:defining the role of annexin A5 imaging in cancer treatment and surveillance[J]. Cancer Res, 2006, 66(3):1255-1260. DOI:10.1158/0008-5472.CAN-05-3000.
[26] Murakami Y, Takamatsu H, Taki J, et al. 18F-labelled annexin V:a PET tracer for apoptosis imaging[J]. Eur J Nucl Med Mol Imaging,2004, 31(4):469-474. DOI:10.1007/s00259-003-1378-8.
[27] Cohen A, Shirvan A, Levin G, et al. From the Gla domain to a novel small-molecule detector of apoptosis[J]. Cell Res, 2009, 19(5):625-637. DOI:10.1038/cr.2009.17.
[28] Yao S, Hu K, Tang G, et al. Molecular PET imaging of cyclophos-phamide induced apoptosis with 18F-ML-8[J/OL]. Biomed Res Int, 2015:317403[2017-04-20]. http://www.ncbi.nlm.nih.gov/pubmed/25977920. DOI:10.1155/2015/317403.
[29] Damianovich M, Ziv I, Heyman SN, et al. ApoSense:a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis[J]. Eur J Nucl Med Mol Imaging,2006, 33(3):281-291. DOI:10.1007/s00259-005-1905-x.
[30] Aloya R, Shirvan A, Grimberg H, et al. Molecular imaging of cell death in vivo by a novel small molecule probe[J]. Apoptosis, 2006, 11(12):2089-2101. DOI:10.1007/s10495-006-0282-7.
[31] 张晓军, 李云钢, 刘健, 等. 18F-ML-10的制备、生物分布和临床应用[J]. 中华核医学与分子影像杂志, 2016, 36(2):131-136. DOI:10.3760/cma.j.issn. 2095-2848. 2016.02.008. Zhang XJ, Li YG, Liu J, et al. Preparation and biodistribution of 2-(5-[18F] fluoro-pentyl)-2-methyl-malonic acid and its clinical application[J]. Chin J Nucl Med Mol Imaging, 2016, 36(2):131-136.
[32] H?glund J, Shirvan A, Antoni G, et al. 18F-ML-10, a PET tracer for apoptosis:first human study[J]. J Nucl Med, 2011, 52(5):720-725.DOI:10.2967/jnumed.110.081786.
[33] Allen AM, Ben-Ami M, Reshef A, et al. Assessment of response of brain metastases to radiotherapy by PET imaging of apoptosis with 1F-ML-10[J]. Eur J Nucl Med Mol Imaging, 2012, 39(9):1400-1408. DOI:10.1007/s00259-012-2150-8.
[34] Oborski MJ, Laymon CM, Lieberman FS, et al. First use of 18F-labeled ML-10 PET to assess apoptosis change in a newly diagnosed glioblastoma multiforme patient before and early after therapy[J].Brain Behav, 2014, 4(2):312-315. DOI:10.1002/brb3.217.
[35] Bauwens M, de Saint-Hubert M, Cleynhens J, et al. Radioiodinated phenylalkyl malonic acid derivatives as pH-sensitive SPECT tracers[J/OL]. PLoS One, 2012, 7(6):e38428[2017-04-20]. http://www.ncbi.nlm.nih.gov/pubmed/22719886. DOI:10.1371/journal.pone.0038428.
[36] Su H, Chen G, Gangadharmath U, et al. Evaluation of 18F-CP18 as a PET imaging tracer for apoptosis[J]. Mol Imaging Biol, 2013, 15(6):739-747. DOI:10.1007/s11307-013-0644-9.
[37] Xia CF, Chen G, Gangadharmath U, et al. In vitro and in vivo evaluation of the caspase-3 substrate-based radiotracer 18F-CP18 for PET imaging of apoptosis in tumors[J]. Mol Imaging Biol, 2013, 15(6):748-757. DOI:10.1007/s11307-013-0646-7.
[38] Rapic S, Vangestel C, Elvas F, et al. Evaluation of 18F CP18 as a Substrate-Based apoptosis imaging agent for the assessment of early treatment response in oncology[J/OL]. Mol Imaging Biol, 2017[2017-04-20]. http://www.ncbi.nlm.nih.gov/pubmed/28050749.DOI:10.1007/s11307-016-1037-7.[published online ahead of print].
[39] 张宝石. 18F标记小分子肽(18F-CP-18)早期评价肺癌化疗后细胞凋亡的基础研究[D]. 北京:军医进修学院, 2011:24-31. Zhang BS. Experiment on 18F-CP-18 in early evaluation of lung cancer apoptosis after chemotherapy[D]. Beijing:Chinese PLA Postgraduate Medical School, 2011:24-31.
[40] 吴晓燕. Caspase-3探针F-CP-18在体外和活体肿瘤细胞凋亡显像的实验研究[D]. 天津:南开大学, 2014:27-38. Wu XY. In vitro and in vivo evaluation of the caspase-3 substrate-based probe F-CP-18 for apoptosis imaing in tumor[D]. Tianjin:Nankai University, 2014:27-38.
[41] Doss M, Kolb HC, Walsh JC, et al. Biodistribution and radiation dosimetry of 18F-CP-18, a potential apoptosis imaging agent, as determined from PET/CT scans in healthy volunteers[J]. J Nucl Med, 2013, 54(12):2087-2092. DOI:10.2967/jnumed.113.119800.
[42] Smith G, Glaser M, Perumal M, et al. Design, synthesis, and biological characterization of a caspase 3/7 selective isatin labeled with 2-[18F]fluoroethylazide[J]. J Med Chem, 2008, 51(24):8057-8067. DOI:10.1021/jm801107u.
[43] Nguyen QD, Smith G, Glaser M, et al. Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-3/7 specific[18F]-labeled isatin sulfonamide[J]. Proc Natl Acad Sci U S A, 2009, 106(38):16375-16380. DOI:10.1073/pnas.0901310106.
[44] Nguyen QD, Lavdas I, Gubbins J, et al. Temporal and spatial evolution of therapy-induced tumor apoptosis detected by caspase-3-selective molecular imaging[J]. Clin Cancer Res, 2013, 19(14):3914-3924. DOI:10.1158/1078-0432.CCR-12-3814.
[45] Challapalli A, Kenny LM, Hallett WA, et al. 18F-ICMT-11, a caspase-3-specific PET tracer for apoptosis:biodistribution and radiation dosimetry[J]. J Nucl Med, 2013, 54(9):1551-1556. DOI:10.2967/jnumed.112.118760.
[46] Jiang H, Zhao PJ, Su D, et al. Paris saponin I induces apoptosis via increasing the Bax/Bcl-2 ratio and caspase-3 expression in gefitinib-resistant non-small cell lung cancer in vitro and in vivo[J]. Mol Med Rep, 2014, 9(6):2265-2272. DOI:10.3892/mmr. 2014. 2108.
[47] Min Z, Amlani M. Pulmonary Mycobacterium kansasii Infection Mimicking Malignancy on the 18F-FDG PET Scanin a Patient Receiving Etanercept:A Case Report and Literature Review[J/OL]. Case Rep Pulmonol, 2014:973573[2017-04-20]. https://www.ncbi.nlm.nih.gov/pubmed/?term=25389506. DOI:10.1155/2014/973573

相似文献/References:

[1]何燕,苏晋,郑晓霞,等.P-糖蛋白抑制剂在PET显像中的应用研究[J].国际放射医学核医学杂志,2016,40(1):1.[doi:10.3760/cma.j.issn.1673-4114.2016.01.001]
 He Yan,Su Jin,ZhengXiaoxia,et al.Developing P-glycoprotein inhibitor marked by PET[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(4):1.[doi:10.3760/cma.j.issn.1673-4114.2016.01.001]
[2]许飞,刘建军,黄钢,等.PET乏氧显像在预测肿瘤乏氧及指导临床治疗中的应用进展[J].国际放射医学核医学杂志,2016,40(1):35.[doi:10.3760/cma.j.issn.1673-4114.2016.01.008]
 Xu Fei,Liu Jianjun,Huang Gang,et al.The application of hypoxia imaging with PET in predicting tumor hypoxia and guiding clinical therapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(4):35.[doi:10.3760/cma.j.issn.1673-4114.2016.01.008]
[3]陈晓艳,张江虹,邵春林.STAT3与辐射敏感相关性的研究进展[J].国际放射医学核医学杂志,2016,40(3):191.[doi:10.3760/cma.j.issn.1673-4114.2016.03.007]
 Chen Xiaoyan,Jianghong,Shao Chunlin.Research progresses of correlation between STAT3 and radiosensitivity[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(4):191.[doi:10.3760/cma.j.issn.1673-4114.2016.03.007]
[4]张俊伶,薛晓蕾,李源,等.富氢水对电离辐射引起胸腺细胞损伤的影响[J].国际放射医学核医学杂志,2015,39(5):358.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 001]
 zhang junling,xue xiaolei,li yuan,et al.effects of hydrogen-rich water on radiation-induced thymus injury[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(4):358.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 001]
[5]赵舒怡,储小飞,樊赛军.血清肿瘤标志物与肿瘤放疗疗效评估的研究进展[J].国际放射医学核医学杂志,2015,39(5):427.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 018]
 zhao shuyi,chu xiaofei,fan saijun..progression of study on serum tumor markers in evaluation of tumor radiotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(4):427.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 018]
[6]赵徵鑫,翟贺争,张文艺,等.质子重离子治疗肿瘤的进展[J].国际放射医学核医学杂志,2016,40(5):384.[doi:10.3760/cma.j.issn.1673-4114.2016.05.010]
 Zhao Zhixin,Zhai Hezheng,Zhang Wenyi,et al.Development of proton heavy ion in tumor therapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(4):384.[doi:10.3760/cma.j.issn.1673-4114.2016.05.010]
[7]任佳忠,李永梅,刘岩,等.99Tcm-MDP骨显像胸部异常放射性摄取的原因分析[J].国际放射医学核医学杂志,2016,40(6):459.[doi:10.3760/cma.j.issn.1673-4114.2016.06.011]
 Jiazhong,Li Yongmei,Liu Yan,et al.Reasons for the abnormal 99Tcm-MDP uptake in the thoracic tissue on bone scintigraphy[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(4):459.[doi:10.3760/cma.j.issn.1673-4114.2016.06.011]
[8]马彦云,张辉.磁共振体素内不相干运动扩散加权成像的原理及应用进展[J].国际放射医学核医学杂志,2016,40(6):469.[doi:10.3760/cma.j.issn.1673-4114.2016.06.013]
 Ma Yanyun,Zhang Hui.The basic principle and application progress of intravoxel incoherent motion imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(4):469.[doi:10.3760/cma.j.issn.1673-4114.2016.06.013]
[9]安淑娴,宋少莉,黄钢.放射性核素标记的凋亡显像剂的研究进展[J].国际放射医学核医学杂志,2015,39(6):470.[doi:10.3760/cma.j.issn.1673-4114.2015.06.008]
 An Shuxian,Song Shaoli,Huang Gang.Recent advances in apoptosis imaging using radionuclide-labeled tracers[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(4):470.[doi:10.3760/cma.j.issn.1673-4114.2015.06.008]
[10]杨卫东,汪静.肿瘤核素靶向治疗新进展[J].国际放射医学核医学杂志,2015,39(1):19.[doi:10.3760/cma.j.issn.1673-4114.2015.01.006]
 Yang Weidong,Wang Jing.Advance progress of radionuclide target tumor therapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(4):19.[doi:10.3760/cma.j.issn.1673-4114.2015.01.006]
[11]陈顺军,程兵.肿瘤细胞凋亡核素显像分子探针研究进展[J].国际放射医学核医学杂志,2016,40(2):149.[doi:10.3760/cma.j.issn.1673-4114.2016.02.013]
 Chen Shunjun,Cheng Bing.Progress in molecular probes of radionuclide tumor apoptosis imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(4):149.[doi:10.3760/cma.j.issn.1673-4114.2016.02.013]
[12]郭艳婷,张鹏飞,刘强.Smac与肿瘤放射治疗[J].国际放射医学核医学杂志,2013,37(5):309.[doi:10.3760/cma.j.issn.1673-4114.2013.05.014]
 GUO Yan-ting,ZHANG Peng-fei,LIU Qiang.Effects of Smac on tumor radiotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2013,37(4):309.[doi:10.3760/cma.j.issn.1673-4114.2013.05.014]
[13]张敬勉,赵新明,王建方,等.99Tc-亚甲基二膦酸盐与153Sm-乙二胺四亚甲基膦酸对骨侵袭和骨质溶解抑制作用的对比研究[J].国际放射医学核医学杂志,2008,32(6):321.
 ZHANG Jing-mian,ZHAO Xin-ming,WANG Jian-fang,et al.The comparative study of inhibitory effects of 99Tc-methylenediphosphonate and 153Sm-ethylene diamine tetramethylene phosphonic acid on bone invasion and osteolysis[J].International Journal of Radiation Medicine and Nuclear Medicine,2008,32(4):321.
[14]张欣,李亚明.99mTc标记annexin V类显像剂细胞凋亡显像在肿瘤研究中的应用及进展[J].国际放射医学核医学杂志,2006,30(4):210.
 ZHANG Xin,LI Ya-ming.Application and advance of apoptosis 99mTc labelled annexin V imaging in tumor research[J].International Journal of Radiation Medicine and Nuclear Medicine,2006,30(4):210.
[15]黄代娟.放射性核素标记annexin V凋亡显像在肿瘤研究中的进展[J].国际放射医学核医学杂志,2003,27(4):165.
 HUANG Dai-juan.Advance of apoptosis imaging with radiolabeled annexin V in tumor research[J].International Journal of Radiation Medicine and Nuclear Medicine,2003,27(4):165.
[16]林亚华,叶巧滔.FHIT基因研究进展[J].国际放射医学核医学杂志,2001,25(6):275.
 LIN Ya-hua,YE Qiao-tao.Advances of FHIT gene[J].International Journal of Radiation Medicine and Nuclear Medicine,2001,25(4):275.
[17]刘成,程竞仪,章英剑.碳离子射线诱导细胞凋亡的研究进展[J].国际放射医学核医学杂志,2018,(1):58.[doi:10.3760/cma.j.issn.1673-4114.2018.01.011]
 Liu Cheng,Cheng Jingyi,Zhang Yingjian.Progress in cell apoptosis induced by carbon ion beam[J].International Journal of Radiation Medicine and Nuclear Medicine,2018,(4):58.[doi:10.3760/cma.j.issn.1673-4114.2018.01.011]

备注/Memo

备注/Memo:
收稿日期:2017-04-24。
基金项目:国家自然科学基金(81571704、81671719);广东省自然科学基金(2015A030313067);广东省科技计划项目(2013B021800264);广州市科技计划项目(201604020169)
通讯作者:唐刚华,Email:gtang0224@126.com
更新日期/Last Update: 2017-07-31