[1]赵龙,罗作明,孙龙,等.新型αvβ3和Neuropilin-1双靶点正电子成像探针18F-FAl-NOTA-RGD-ATWLPPR用于脑胶质瘤的PET显像研究[J].国际放射医学核医学杂志,2017,41(4):233-240.[doi:10.3760/cma.j.issn.1673-4114.2017.04.001]
 Zhao Long,Luo Zuoming,Sun Long,et al.Imaging of glioma with an integrin αvβ3 and neuropilin-1 dual-targeted PET probe 18F-FAl-NOTA-RGD-ATWLPPR[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(4):233-240.[doi:10.3760/cma.j.issn.1673-4114.2017.04.001]
点击复制

新型αvβ3和Neuropilin-1双靶点正电子成像探针18F-FAl-NOTA-RGD-ATWLPPR用于脑胶质瘤的PET显像研究(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
41
期数:
2017年第4期
页码:
233-240
栏目:
论著
出版日期:
2017-07-25

文章信息/Info

Title:
Imaging of glioma with an integrin αvβ3 and neuropilin-1 dual-targeted PET probe 18F-FAl-NOTA-RGD-ATWLPPR
作者:
赵龙 罗作明 孙龙 吴华 陈皓鋆
361003, 厦门大学附属第一医院厦门市肿瘤医院核医学科/闽南PET中心
Author(s):
Zhao Long Luo Zuoming Sun Long Wu Hua Chen Haojun
Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Hospital, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
关键词:
整合素αvβ3神经纤毛蛋白质1正电子发射断层显像术分子探针
Keywords:
Integrin αvβ3Neuropilin-1Positron-emission tomographyMolecular probes
DOI:
10.3760/cma.j.issn.1673-4114.2017.04.001
摘要:
目的 构建可靶向αvβ3和血管内皮生长因子受体Neuropilin-1(NRP-1)双受体的正电子成像探针,并验证双靶点融合肽探针较之单靶点探针的优越性。方法 采用18F-氟化铝(18F-FAl)配合物的方法实现分子探针的18F标记。在人神经胶质瘤U87MG细胞中,检测αvβ3和NRP-1的表达水平,测定分子探针精氨酸-甘氨酸-天冬氨酸(RGD)-丙氨酸-苏氨酸-色氨酸-亮氨酸-脯氨酸-脯氨酸-精氨酸(ATWLPPR)与αvβ3/NRP-1的受体-配体亲和力。在U87MG荷瘤裸鼠模型中,测定18F标记RGD-ATWLPPR的体内肿瘤micro-PET显像特性,并且与其对应单体进行比较分析。采用方差分析和t检验对结果进行统计学分析。结果 αvβ3及NRP-1在U87MG肿瘤细胞、肿瘤组织及肿瘤新生血管中均有较高水平的表达。受体-配体亲和力测定的实验结果显示,18F-FAl-NOTA-RGD-ATWLPPR双靶点融合肽与αvβ3及NRP-1的亲和力并未明显优于其单体,但融合肽在U87MG细胞中的摄取高于相应的单体肽。Micro-PET显像结果显示,融合肽较其单体肽RGD[(4.86±0.48)% ID/g vs.(3.33±0.15)% ID/g,t=10.21,P<0.05]和ATWLPPR[(4.86±0.48)% ID/g vs.(2.28±0.41)% ID/g,t=32.16,P<0.05]表现出了更好的显像效果,且融合肽在αvβ3、NRP-1任一受体被未标记“冷”肽阻断的情况下仍能获得肿瘤的阳性显像结果。结论 18F-FAl-NOTA-RGD-ATWLPPR可以灵敏地对整合素αvβ3和NRP-1中任何一个受体高表达的肿瘤进行显像,并且较其单体具有更高的肿瘤摄取,但该融合肽的受体-配体亲和力还有待进一步提高。
Abstract:
Objective Arg-Gly-Asp (RGD) or Ala-Thr-Trp-Leu-Pro-Pro-Arg (ATWLPPR) peptide binds specifically to integrin αvβ3 or neuropilin-1(NRP-1) receptor,respectively.In this study,a novel heterodimer peptide probe containing both RGD and ATWLPPR was designed in one molecule.The in vitro and in vivo biological behavior of the dual-targeted imaging probe RGD-ATWLPPR was compared with its corresponding counterparts.Methods 18F labeling was conducted through 18F-FAl approach.In the integrin αvβ3-positive U87MG human glioma cell line,the αvβ3/NRP-1 receptor binding affinity of RGD-ATWLPPR was tested and compared with its counterparts RGD and ATWLPPR.The tumor uptake and distribution pattern of 18F-labeled RGD-ATWLPPR through PET imaging was evaluated and compared with those of RGD and ATWLPPR.The means were compared using one-way ANOVA and t test.Results Both integrin αvβ3 and NRP-1 showed high expression in U87MG glioma cells and tumor tissues.RGD-ATWLPPR exhibited similar in vitro receptor binding affinity to those of RGD and ATWLPPR.Based on the PET imaging study,18F-labeled RGD-ATWLPPR (denoted as 18F-FAl-NOTA-RGD-ATWLPPR) demonstrated significantly higher tumor uptake than RGD[(4.86±0.48)% ID/g vs.(3.33±0.15)% ID/g,t=10.21,P<0.05]and ATWLPPR[(4.86±0.48)% ID/g vs.(2.28±0.41)% ID/g,t=32.16,P<0.05].In the blocking study,18F-FAl-NOTA-RGD-ATWLPPR showed positive imaging result in the presence of excess unlabeled RGD or ATWLPPR.The tumor uptake decreased to the background level when unlabeled RGD and ATWLPPR were co-injected before administration of 18F-FAl-NOTA-RGD-ATWLPPR.Conclusions The dual-targeted PET probe 18F-FAl-NOTA-RGD-ATWLPPR specifically binds to either integrin αvβ3 or NRP-1 receptor and could be a promising PET imaging agent for NRP-1-/αvβ3+and NRP-1+/αvβ3-tumors.The receptor-binding affinity of RGD-ATWLPPR must be further improved.

参考文献/References:

[1] Wu H, Chen H, Sun Y, et al. Imaging integrin αvβ3 positive glioma with a novel RGD dimer probe and the impact of antiangiogenic agent(Endostar) on its tumor uptake[J]. Cancer Lett, 2013, 335(1) 75-80. DOI:10.1016/j.canlet.2013.01.053.
[2] Chen H, Niu G, Wu H, et al. Clinical application of radiolabeled RGD peptides for PET imaging of integrin αvβ3[J]. Theranostics,2016, 6(1):78-92. DOI:10.7150/thno.13242.
[3] Miyauchi JT, Chen D, Choi M, et al. Ablation of neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression[J]. Oncotarget, 2016, 7(9):9801-9814. DOI:10.18632/oncotarget.6877.
[4] Tuszynski GP, Knight LC, Kornecki E, et al. Labeling of platelet surface proteins with 125I by the iodogen method[J]. Anal Biochem, 1983, 130:166-170. DOI:10.1016/0003-2697(83)90664-4.
[5] Capello A, Krenning EP, Bernard BF, et al. Anticancer activity of targeted proapoptotic peptides[J]. J Nucl Med, 2006, 47(1):122-129. DOI:10.1158/1535-7163.
[6] Liu Z, Yan Y, Chin FT, et al. Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN[J]. J Med Chem, 2009, 52(2):425-432. DOI:10.1021/jm801285t.
[7] Liu SL, Liu HG, Jiang H, et al. One-step radiosynthesis of 18F-AlF-NOTA-RGD2 for tumor angiogenesis PET imaging[J]. Eur J Nucl Med Mol Imaging, 2011, 38(9):1732-1741. DOI:10.1007/s00259-011-1847-4.
[8] Zhang J, Niu G, Lang L, et al. Clinical translation of a dual integrin αvβ3-and Gastrin-Releasing peptide Receptor-Targeting PET radiotracer, 68Ga-BBN-RGD[J]. J Nucl Med, 2017, 58(2):228-234. DOI:10.2967/jnumed.116.177048.
[9] Chen Q, Ma Q, Chen M, et al. An exploratory study on 99mTc-RGD-BBN peptide scintimammography in the assessment of breast malignant lesions compared to 99mTc-3P4-RGD2[J/OL]. PLoS One, 2015, 10(4):e0123401[2017-03-08]. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0123401. DOI:10.1371/journal.pone.0123401.
[10] Fan D, Zhang X, Zhong L, et al. 68Ga-labeled 3PRGD2 for dual PET and Cerenkov luminescence imaging of orthotopic human glioblastoma[J]. Bioconjug Chem, 2015, 26(6):1054-1060. DOI:10.1021/acs.bioconjchem.5b00169.
[11] Yan Y, Chen K, Yang M, et al. A new 18F-labeled BBN-RGD peptide heterodimer with a symmetric linker for prostate cancer imaging[J]. Amino Acids, 2011, 41(2):439-447. DOI:10.1007/s00726-010-0762-5.
[12] Yan Y, Chen X. Peptide heterodimers for molecular imaging[J].Amino Acids, 2011, 41(5):1081-1092. DOI:10.1007/s00726-010-0546-y.
[13] Liu Z, Huang J, Dong C, et al. 99mTc-labeled RGD-BBN peptide for small-animal SPECT/CT of lung carcinoma[J]. Mol Pharm, 2012, 9(5):1409-1417. DOI:10.1021/mp200661t.
[14] Liu Z, Niu G, Shi J, et al. 68Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers:promising agents for tumor integrin αvβ3 PET imaging[J]. Eur J Nucl Med Mol Imaging, 2009, 36(6):947-957. DOI:10.1007/s00259-008-1045-1.
[15] Jin X, Liang N, Wang M, et al. Integrin imaging with 99mTc-3PRGD2 SPECT/CT shows high specificity in the diagnosis of lymph node metastasis from Non-Small cell lung cancer[J]. Radiology, 2016, 281(3):958-966. DOI:10.1148/radiol.2016150813.

相似文献/References:

[1]黄建敏,解朋,刘晓梅,等.以整合素αvβ3为靶点的肿瘤分子显像及靶向治疗[J].国际放射医学核医学杂志,2015,39(3):256.[doi:10.3760/cma.j.issn.1673-4114.2015.03.015]
 Huang Jianmin,Xie Peng,Liu Xiaomei,et al.Integrins αvβ3 in molecular imaging and targeted therapy of neoplasms[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(4):256.[doi:10.3760/cma.j.issn.1673-4114.2015.03.015]
[2]邵国强,王自正.整合素αvβ3受体靶向肿瘤显像研究进展[J].国际放射医学核医学杂志,2014,38(1):33.[doi:10.3760/cma.j.issn 1673-4114.2014.01.007]
 Shao Guoqiang,Wang Zizheng.Integrin αvβ3 targeted tumor imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(4):33.[doi:10.3760/cma.j.issn 1673-4114.2014.01.007]
[3]郝玉美,贺欣,宋娜玲.靶向肿瘤新生血管整合素αvβ3受体显像研究现状及进展[J].国际放射医学核医学杂志,2014,38(3):179.[doi:10.3760/cma.j.issn.1673-4114.2014.03.010]
 Hao Yumei,He Xin,Song Naling.Progress on tumor angiogenesis imaging targeting integrin αvβ3 receptor[J].International Journal of Radiation Medicine and Nuclear Medicine,2014,38(4):179.[doi:10.3760/cma.j.issn.1673-4114.2014.03.010]
[4]刘晓梅,魏玲格,张芳.以血管生成为分子靶点的放射性核素显像分子探针在肿瘤个体化用药中的应用[J].国际放射医学核医学杂志,2017,41(5):363.[doi:10.3760/cma.j.issn.1673-4114.2017.05.011]
 Liu Xiaomei,Wei Lingge,Zhang Fang.Targeting angiogenesis of radionuclide imaging molecular probes for tumor individualized medicine[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(4):363.[doi:10.3760/cma.j.issn.1673-4114.2017.05.011]

备注/Memo

备注/Memo:
收稿日期:2017-03-08。
基金项目:国家自然科学基金(81101066)
通讯作者:陈皓鋆,Email:leochen0821@foxmail.com
更新日期/Last Update: 2017-07-31