[1]董佳丽,路璐,樊赛军.坏死性凋亡在肿瘤放化疗中的研究进展与思考[J].国际放射医学核医学杂志,2017,41(3):220-226.[doi:10.3760/cma.j.issn.1673-4114.2017.03.012]
 Dong Jiali,Lu Lu,Fan Saijun.Progress in research on necroptosis as a target for cancer radiotherapy and chemotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(3):220-226.[doi:10.3760/cma.j.issn.1673-4114.2017.03.012]
点击复制

坏死性凋亡在肿瘤放化疗中的研究进展与思考(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
41
期数:
2017年第3期
页码:
220-226
栏目:
综述
出版日期:
2017-05-25

文章信息/Info

Title:
Progress in research on necroptosis as a target for cancer radiotherapy and chemotherapy
作者:
董佳丽 路璐 樊赛军
300192 天津, 中国医学科学院北京协和医学院放射医学研究所, 天津市放射医学与分子核医学重点实验室
Author(s):
Dong Jiali Lu Lu Fan Saijun
Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College, Tianjin 300192, China
关键词:
肿瘤坏死性凋亡受体相互作用蛋白混合谱系激酶结构域蛋白
Keywords:
NeoplasmsNecroptosisReceptor interacting proteinMixed lineage kinase domain-like protein
DOI:
10.3760/cma.j.issn.1673-4114.2017.03.012
摘要:
肿瘤具有对程序性细胞死亡的抵抗作用,这是肿瘤细胞会产生放化疗耐受的原因之一。细胞程序性死亡不仅包括依赖含半胱氨酸的天冬氨酸蛋白水解酶(caspase)的细胞凋亡,也包括一种最近研究热门的非依赖caspase的死亡形式——坏死性凋亡。目前研究发现坏死性凋亡是由受体相互作用蛋白1(RIP1)、受体相互作用蛋白3(RIP3)以及混合谱系激酶结构域蛋白(MLKL)进行调控。笔者简要地总结了目前国内外坏死性凋亡相关的研究进展,为坏死性凋亡作为一种肿瘤放化疗新靶点的深入研究提供新思路。
Abstract:
A characteristic of cancer is resistance to programmed cell death, which sustains cell survival through oncogenic transformation and therapeutic resistance. Recent studies have shown that programmed cell death is not limited to caspase-dependent apoptosis. Necroptosis, a caspase-independent form of cell death, is regulated by receptor interacting protein 1, receptor interacting protein 3, and mixed lineage kinase domain-like proteins. This review summarized current research studies on necroptosis to provide perspectives for the development of novel tumor radiotherapy and chemotherapy strategies that target this process.

参考文献/References:

[1] Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines:recommendations of the Nomenclature Committee on Cell Death 2012[J]. Cell Death Differ, 2012, 19(1):107-120. DOI:10.1038/cdd.2011.96.
[2] Su Z, Yang Z, Xu Y, et al. Apoptosis, autophagy, necroptosis, and cancer metastasis[J]. Mol Cancer, 2015, 14:48. DOI:10.1186/s12943-015-0321-5.
[3] Jouan-Lanhouet S, Riquet F, Duprez L, et al. Necroptosis, in vivo detection in experimental disease models[J]. Semin Cell Dev Biol, 2014, 35:2-13. DOI:10.1016/j.semcdb.2014.08.010.
[4] Cai Z, Jitkaew S, Zhao J, et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis[J]. Nat Cell Biol, 2013, 16(1):55-65. DOI:10.1038/ncb2883.
[5] Dillon CP, Weinlich R, Rodriguez DA, et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3[J]. Cell, 2014, 157(5):1189-1202. DOI:10.1016/j.cell.2014.04.018.
[6] Zhang H, Zhou X, McQuade T, et al. Functional complementation between FADD and RIP1 in embryos and lymphocytes[J]. Nature, 2011, 471(7338):373-376. DOI:10.1038/nature09878.
[7] Huang Z, Wu SQ, Liang Y, et al. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice[J]. Cell Host Microbe, 2015, 17(2):229-242. DOI:10.1016/j.chom.2015. 01.002.
[8] Zhou W, Yuan J. Necroptosis in health and diseases[J]. Semin Cell Dev Biol, 2014, 35:14-23. DOI:10.1016/j.semcdb.2014.07.013.
[9] Vanlangenakker N, Vanden Berghe T, Vandenabeele P. Many sti-muli pull the necrotic trigger, an overview[J]. Cell Death Differ, 2012, 19(1):75-86. DOI:10.1038/cdd.2011.164.
[10] Bertrand MJ, Milutinovic S, Dickson KM, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination[J]. Mol Cell, 2008, 30(6):689-700.DOI:10.1016/j.molcel.2008.05.014.
[11] Varfolomeev E, Blankenship JW, Wayson SM, et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis[J]. Cell, 2007, 131(4):669-681.DOI:http://dx.doi.org/10.1016/j.cell.2007.10.030.
[12] Moquin DM, McQuade T, Chan FK. CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis[J/OL]. PLoS One, 2013, 8(10):e76841[2017-03-22]. https://www.ncbi.nlm.nih.gov/pubmed/?term=24098568.DOI:10.1371/journal.pone.0076841.
[13] Wang L, Du F, Wang X. TNF-α induces two distinct caspase-8 acti-vation pathways[J]. Cell, 2008, 133(4):693-703. DOI:10.1016/j.cell.2008.03.036.
[14] Oberst A, Dillon CP, Weinlich R, et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis[J]. Nature, 2011, 471(7338):363-367. DOI:10.1038/nature09852.
[15] Li J, McQuade T, Siemer AB, et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis[J]. Cell, 2012, 150(2):339-350. DOI:10.1016/j.cell.2012. 06.019.
[16] Sun L, Wang H, Wang Z, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase[J]. Cell, 2012, 148(1-2):213-227. DOI:10.1016/j.cell.2011. 11.031.
[17] Orozco S, Yatim N, Werner MR, et al. RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis[J]. Cell Death Differ, 2014, 21(10):1511-1521. DOI:10.1038/cdd.2014.76.
[18] Kaiser WJ, Sridharan H, Huang C, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL[J]. J Biol Chem, 2013, 288(43):31268-31279. DOI:10.1074/jbc.M113.462341.
[19] Upton JW, Kaiser WJ, Mocarski ES. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA[J]. Cell Host Microbe, 2012, 11(3):290-297. DOI:10.1016/j.chom.2012.01.016.
[20] McComb S, Cessford E, Alturki NA, et al. Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages[J/OL]. Proc Natl Acad Sci USA, 2014, 111(31):E3206-E3213[2017-03-22]. https://www.ncbi.nlm.nih.gov/pubmed/?term=25049377.DOI:10.1073/pnas.1407068111.
[21] Mantel F, Frey B, Haslinger S, et al. Combination of ionising irradi-ation and hyperthermia activates programmed apoptotic and necro-tic cell death pathways in human colorectal carcinoma cells[J]. Strahlenther Onkol, 2010, 186(11):587-599. DOI:10.1007/s00066-010-2154-x.
[22] Nehs MA, Lin CI, Kozono DE, et al. Necroptosis is a novel mechanism of radiation-induced cell death in anaplastic thyroid and adrenoco-rtical cancers[J]. Surgery, 2011, 150(6):1032-1039. DOI:10.1016/j.surg. 2011.09.012.
[23] Harberts E, Fishelevich R, Liu J, et al. MyD88 mediates the decision to die by apoptosis or necroptosis after UV irradiation[J]. Innate Immun, 2014, 20(5):529-539. DOI:10.1177/1753425913501706.
[24] Das A, McDonald DG, Dixon-Mah YN, et al. RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma[J]. Tumour Biol, 2016, 37(6):7525-7534. DOI:10.1007/s13277-015-4621-6.
[25] Liu X, Zhou M, Mei L, et al. Key roles of necroptotic factors in promoting tumor growth[J/OL]. Oncotarget, 2016, 7(16):22219-22233[2017-03-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5008357.DOI:10.18632/oncotarget.7924.
[26] Murphy JM, Czabotar PE, Hildebrand JM, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism[J]. Immunity, 2013, 39(3):443-453. DOI:10.1016/j.immuni. 2013.06. 018.
[27] Wang H, Sun L, Su L, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phospho-rylation by RIP3[J]. Mol Cell, 2014, 54(1):133-146. DOI:10.1016/j.molcel.2014.03.003.
[28] Lalaoui N, Brumatti G. Relevance of necroptosis in cancer[J]. Immunol Cell Biol, 2017, 95(2):137-145. DOI:10.1038/icb.2016.120.
[29] Moriwaki K, Bertin J, Gough PJ, et al. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death[J/OL]. Cell Death Dis, 2015, 6:e1636[2017-03-22]. DOI:10.1038/cddis.2015.16.
[30] Philipp S, Sosna J, Plenge J, et al. Homoharringtonine, a clinically approved anti-leukemia drug, sensitizes tumor cells for TRAIL-induced necroptosis[J/OL]. Cell Commun Signal, 2015, 13:25[2017-03-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4411737/.DOI:10.1186/s12964-015-0103-0.
[31] Wada N, Kawano Y, Fujiwara S, et al. Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells[J]. Int J Oncol, 2015, 46(3):963-972. DOI:10.3892/ijo.2014. 2804.
[32] Xu B, Xu M, Tian Y, et al. Matrine induces RIP3-dependent necrop-tosis in cholangiocarcinoma cells[J/OL]. Cell Death Discov, 2017, 3:16096[2017-03-22]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253620.DOI:10.1038/cddiscovery.2016.96.
[33] Holohan C, Van Schaeybroeck S, Longley DB, et al. Cancer drug resistance:an evolving paradigm[J]. Nat Rev Cancer, 2013, 13(10):714-726. DOI:10.1038/nrc3599.
[34] Han W, Li L, Qiu S, et al. Shikonin circumvents cancer drug resis-tance by induction of a necroptotic death[J]. Mol Cancer Ther, 2007, 6(5):1641-1649. DOI:10.1158/1535-7163.MCT-06-0511.
[35] Bonapace L, Bornhauser BC, Schmitz M, et al. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance[J]. J Clin Invest, 2010, 120(4):1310-1323. DOI:10.1172/JCI39987.
[36] Laukens B, Jennewein C, Schenk B, et al. Smac mimetic bypasses apoptosis resistance in FADD-or caspase-8-deficient cells by prim-ing for tumor necrosis factor α-induced necroptosis[J]. Neoplasia, 2011, 13(10):971-979. DOI:10.1593/neo.11610.
[37] McCabe KE, Bacos K, Lu D, et al. Triggering necroptosis in cisplatin and IAP antagonist-resistant ovarian carcinoma[J/OL]. Cell Death Dis, 2014, 5:e1496[2017-03-22]. https://www.nature.com/cddis/journal/v5/n10/full/cddis2014448a.html.DOI:10.1038/cddis.2014.448.
[38] Wang Z, Jiang H, Chen S, et al. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways[J]. Cell, 2012, 148(1-2):228-243. DOI:10.1016/j.cell.2011.11.030.
[39] Forbes SA, Bhamra G, Bamford S, et al. The Catalogue of Somatic Mutations in Cancer (COSMIC)[J/OL]. Curr Protoc Hum Genet, 2008[2017-03-22]. https://www.ncbi.nlm.nih.gov/pubmed/?term=18428421.DOI:10.1002/0471142905.hg1011s57.
[40] Wilson WR, Hay MP. Targeting hypoxia in cancer therapy[J]. Nat Rev Cancer, 2011, 11(6):393-410. DOI:10.1038/nrc3064.
[41] Huang CY, Kuo WT, Huang YC, et al. Resistance to hypoxia-induced necroptosis is conferred by glycolytic pyruvate scavenging of mito-chondrial superoxide in colorectal cancer cells[J/OL]. Cell Death Dis, 2013, 4:e622[2017-03-22]. https://www.ncbi.nlm.nih.gov/pubmed/?term=23640464.DOI:10.1038/cddis.2013.149.

相似文献/References:

[1]何燕,苏晋,郑晓霞,等.P-糖蛋白抑制剂在PET显像中的应用研究[J].国际放射医学核医学杂志,2016,40(1):1.[doi:10.3760/cma.j.issn.1673-4114.2016.01.001]
 He Yan,Su Jin,ZhengXiaoxia,et al.Developing P-glycoprotein inhibitor marked by PET[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):1.[doi:10.3760/cma.j.issn.1673-4114.2016.01.001]
[2]许飞,刘建军,黄钢,等.PET乏氧显像在预测肿瘤乏氧及指导临床治疗中的应用进展[J].国际放射医学核医学杂志,2016,40(1):35.[doi:10.3760/cma.j.issn.1673-4114.2016.01.008]
 Xu Fei,Liu Jianjun,Huang Gang,et al.The application of hypoxia imaging with PET in predicting tumor hypoxia and guiding clinical therapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):35.[doi:10.3760/cma.j.issn.1673-4114.2016.01.008]
[3]陈顺军,程兵.肿瘤细胞凋亡核素显像分子探针研究进展[J].国际放射医学核医学杂志,2016,40(2):149.[doi:10.3760/cma.j.issn.1673-4114.2016.02.013]
 Chen Shunjun,Cheng Bing.Progress in molecular probes of radionuclide tumor apoptosis imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):149.[doi:10.3760/cma.j.issn.1673-4114.2016.02.013]
[4]陈晓艳,张江虹,邵春林.STAT3与辐射敏感相关性的研究进展[J].国际放射医学核医学杂志,2016,40(3):191.[doi:10.3760/cma.j.issn.1673-4114.2016.03.007]
 Chen Xiaoyan,Jianghong,Shao Chunlin.Research progresses of correlation between STAT3 and radiosensitivity[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):191.[doi:10.3760/cma.j.issn.1673-4114.2016.03.007]
[5]赵舒怡,储小飞,樊赛军.血清肿瘤标志物与肿瘤放疗疗效评估的研究进展[J].国际放射医学核医学杂志,2015,39(5):427.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 018]
 zhao shuyi,chu xiaofei,fan saijun..progression of study on serum tumor markers in evaluation of tumor radiotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):427.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 018]
[6]赵徵鑫,翟贺争,张文艺,等.质子重离子治疗肿瘤的进展[J].国际放射医学核医学杂志,2016,40(5):384.[doi:10.3760/cma.j.issn.1673-4114.2016.05.010]
 Zhao Zhixin,Zhai Hezheng,Zhang Wenyi,et al.Development of proton heavy ion in tumor therapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):384.[doi:10.3760/cma.j.issn.1673-4114.2016.05.010]
[7]任佳忠,李永梅,刘岩,等.99Tcm-MDP骨显像胸部异常放射性摄取的原因分析[J].国际放射医学核医学杂志,2016,40(6):459.[doi:10.3760/cma.j.issn.1673-4114.2016.06.011]
 Jiazhong,Li Yongmei,Liu Yan,et al.Reasons for the abnormal 99Tcm-MDP uptake in the thoracic tissue on bone scintigraphy[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):459.[doi:10.3760/cma.j.issn.1673-4114.2016.06.011]
[8]马彦云,张辉.磁共振体素内不相干运动扩散加权成像的原理及应用进展[J].国际放射医学核医学杂志,2016,40(6):469.[doi:10.3760/cma.j.issn.1673-4114.2016.06.013]
 Ma Yanyun,Zhang Hui.The basic principle and application progress of intravoxel incoherent motion imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):469.[doi:10.3760/cma.j.issn.1673-4114.2016.06.013]
[9]杨卫东,汪静.肿瘤核素靶向治疗新进展[J].国际放射医学核医学杂志,2015,39(1):19.[doi:10.3760/cma.j.issn.1673-4114.2015.01.006]
 Yang Weidong,Wang Jing.Advance progress of radionuclide target tumor therapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):19.[doi:10.3760/cma.j.issn.1673-4114.2015.01.006]
[10]徐金苹,袁德晓,张江虹,等.辐射诱导的外泌体在肿瘤细胞侵袭转移中的作用[J].国际放射医学核医学杂志,2015,39(2):144.[doi:10.3760/cma.j.issn.1673-4114.2015.02.009]
 Xu Jinping,Yuan Dexiao,Zhang Jianghong,et al.The role of radiation-induced exosomes in tumor invasion and metastasis[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):144.[doi:10.3760/cma.j.issn.1673-4114.2015.02.009]

备注/Memo

备注/Memo:
收稿日期:2017-03-27。
基金项目:国家自然科学基金(81592969);科技部科研院所开发项目(2014EG150134);天津科技支撑项目(14ZCZDSY00001);天津市应用基础与前沿技术研究计划青年项目(15JCQNJC46000)
通讯作者:樊赛军,Email:fansaijun@irm-cams.ac.cn
更新日期/Last Update: 2017-06-28