[1]张行,潘燕,邵春林.放射治疗诱发体内旁效应的研究进展[J].国际放射医学核医学杂志,2017,41(3):209-213.[doi:10.3760/cma.j.issn.1673-4114.2017.03.010]
 Zhang Hang,Pan Yan,Shao Chunlin.Research progress on the bystander effect of radiotherapy in vivo[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(3):209-213.[doi:10.3760/cma.j.issn.1673-4114.2017.03.010]
点击复制

放射治疗诱发体内旁效应的研究进展(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
41
期数:
2017年第3期
页码:
209-213
栏目:
综述
出版日期:
2017-05-25

文章信息/Info

Title:
Research progress on the bystander effect of radiotherapy in vivo
作者:
张行 潘燕 邵春林
200032 上海, 复旦大学放射医学研究所
Author(s):
Zhang Hang Pan Yan Shao Chunlin
Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
关键词:
放射疗法活性氧DNA损伤旁效应
Keywords:
RadiotherapyReactive oxygen speciesDNA damageBystander effects
DOI:
10.3760/cma.j.issn.1673-4114.2017.03.010
摘要:
随着肿瘤放疗机制的不断深入研究,人们发现肿瘤放疗时引起的体内旁效应对肿瘤治疗及预后起着至关重要的作用。体内旁效应的产生主要与放疗后引起的氧化应激信号的传递、DNA损伤和免疫系统的激活相关,因此,人们可以通过干预旁效应减少放疗对正常组织损伤并提高肿瘤治疗效果。笔者就近年来放疗引起的体内旁效应及其分子机制的研究进展进行综述。
Abstract:
Extensive research on the mechanism of tumor radiotherapy shows that the bystander effect induced by radiation therapy in vivo plays an important role in tumor therapy and prognosis. The induction of the bystander effect is mainly related to the transmission of oxidative stress signals, DNA damage, and activation of the immune system caused by radiotherapy in vivo. Therefore, the intervention of the bystander effect could reduce injury on normal tissue and improve radiotherapy efficiency. This paper summarizes the research progress on the bystander effect of radiotherapy and its molecular mechanism in recent years in vivo.

参考文献/References:

[1] Nagasawa H, Little JB. Induction of sister chromatid exchanges by extremely low doses of alpha-particles[J]. Cancer Res, 1992, 52(22):6394-6396.
[2] Autsavapromporn N, Suzuki M, Funayama TA, et al. Gap junction communication and the propagation of bystander effects induced by microbeam irradiation in human fibroblast cultures:the impact of radiation quality[J]. Radiat Res, 2013, 180(4):367-375. DOI:10. 1667/RR3111.1.
[3] Albanese J, Dainiak N. Modulation of intercellular communication mediated at the cell surface and on extracellular, plasma membrane derived vesicles by ionizing radiation[J]. Exp Hematol, 2003, 31(6):455-464. DOI:10.1016/S0301-472X(03)00050-X.
[4] Chevalier F, Hamdi DH, Saintigny Y. Proteomic overview and perspectives of the radiation-induced bystander effects[J]. Mutat Res Rev mutat Res, 2015, 763:280-293. DOI:10.1016/j.mrrev. 2014. 11. 008.
[5] Yu X, Harris SL, Levine AJ. The regulation of exosome secretion:a novel function of the p53 protein[J]. Cancer Res, 2006, 66(9):4795-4801. DOI:10.1158/0008-5472.CAN-05-4579.
[6] Tong L, Yu KN, Bao L, et al. Low concentration of exogenous carbon monoxide protects mammalian cells against proliferation induced by radiation-induced bystander effect[J]. Mutat Res, 2014, 759:9-15.DOI:10.1016/j.mrfmmm. 2013. 11. 006.
[7] Mancuso M, Leonardi S, Giardullo PA, et al. Oncogenic radiation abscopal effects in vivo:interrogating mouse skin[J]. Int J Radiat Oncol Biol Phys, 2013, 86(5):993-999. DOI:10.1016/j.ijrobp.2013. 04. 040.
[8] Calveley VL, Jelveh S, Langan A, et al. Genistein can mitigate the effect of radiation on rat lung tissue[J]. Radiat Res, 2010, 173(5):602-611. DOI:10.1667/RR1896.1.
[9] Miften M, Diot Q, Gaspar L, et al. Regional normal lung tissue density changes in patients treated with stereotactic body radiation therapy for lung tumors[J]. Int J Radiat Oncol Biol Phys, 2010, 78(3):S137-138.
[10] Chang JY, Zhang X, Wang X, et al. Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in stage I or stage Ⅲ non-small-cell lung cancer[J]. Int J Radiat Oncol Biol Phys, 2006, 65(4):1087-1096. DOI:org/10.1016/j.ijrobp. 2006. 01. 052.
[11] Desai S, Kobayashi A, Konishi T, et al. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation[J]. Mutat Res, 2014, 763-764:39-44. DOI:10.1016/j.mrfmmm. 2014.03.004.
[12] Siva S, Lobachevsky P, Macmanus MP, et al. Radiotherapy for nonsmall cell lung cancer induces DNA damage response in both irradiated and out-of-field normal tissues[J]. Clin Cancer Res, 2016, 22(19):4817-4826. DOI:10.1158/1078-0432.CCR-16-0138.
[13] Feiock C, Yagi M, Maidman A, et al. Central nervous system injury-A newly observed bystander effect of radiation[J/OL]. PLoS One,2016, 11(9):e0163233[2017-03-10]. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163233.DOI:10.1371/journal.pone.0163233.
[14] Wers?ll PJ, Blomgren H, Pisa P, et al. Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma[J]. Acta Oncol, 2006, 45(4):493-497. DOI:10. 1080/02841860600604611.
[15] Konoeda K. Therapeutic efficacy of pre-operative radiotherapy on breast carcinoma:in special reference to its abscopal effect on metastatic lymph-nodes[J]. Nihon Gan Chiryo Gakkai shi, 1990, 25(6):1204-1214.
[16] Camphausen K, Moses MA, Menard C, et al. Radiation abscopal antitumor effect is mediated through p53[J]. Cancer Res, 2003, 63(8):1990-1993.
[17] Hu BR, Wu LJ, Han W, et al. The time and spatial effects of bystander response in mammalian cells induced by low dose radiation[J]. Carcinogenesis, 2006, 27(2):245-251. DOI:10.1093/carcin/bgi224.
[18] Decrock E, Hoorelbeke D, Ramadan R, et al. Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment?[J]. Biochim Biophys Acta, 2017, 1864(6):1099-1120. DOI:10.1016/j.bbamcr.2017.02.007.
[19] Mancuso M, Pasquali E, Leonardi S, et al. Role of connexin43 and ATP in long-range bystander radiation damage and oncogenesis in vivo[J]. Oncogene, 2011, 30(45):4601-4608. DOI:10.1038/onc.2011.176.
[20] Yakovlev VA.Role of nitric oxide in the radiation-induced bystander effect[J]. Redox Biol, 2015, 6:396-400. DOI:10.1016/j.redox. 2015. 08.018.
[21] Nikitaki Z, Mavragani IV, Laskaratou DA, et al. Systemic mechanisms and effects of ionizing radiation:A new‘old’paradigm of how the bystanders and distant can become the players[J]. Semin Cancer Biol, 2016, 37-38:77-95. DOI:10.1016/j.semcancer. 2016. 02.002.
[22] Xie Y, Tu W, Zhang J, et al. SirT1 knockdown potentiates radiation-induced bystander effect through promoting c-Myc activity and thus facilitating ROS accumulation[J]. Mutat Res, 2015, 772:23-29. DOI:10.1016/j.mrfmmm. 2014.12.010.
[23] Villanueva MT. DNA repair:a new tool to target DNA repair[J]. Nat Rev Cancer, 2015, 15(3):136. DOI:10.1038/nrc3919.
[24] Dickey JS, Baird BJ, Redon CE, et al. Susceptibility to bystander DNA damage is influenced by replication and transcriptional activity[J]. Nucleic Acids Res, 2012, 40(20):10274-10286. DOI:10.1093/nar/gks795.
[25] Gahan PB, Stroun M. The virtosome-a novel cytosolic informative entity and intercellular messenger[J]. Cell Biochem Funct, 2010, 28(7):529-538. DOI:10.1002/cbf.1690.
[26] Havaki S, Kotsinas A, Chronopoulos E, et al. The role of oxidative DNA damage in radiation induced bystander effect[J]. Cancer Lett,2015, 356(1):43-51. DOI:10.1016/j.canlet.2014.01.023.
[27] Natarajan M, Gibbons CF, Mohan S, et al. Oxidative stress signa-lling:a potential mediator of tumour necrosis factor alpha-induced genomic instability in primary vascular endothelial cells[J]. Br J Radiol, 2007, 80(1):S13-22. DOI:10.1259/bjr/15316848.
[28] Glebova K, Veiko N, Kostyuk S, et al. Oxidized extracellular DNA as a stress signal that may modify response to anticancer therapy[J]. Cancer Lett, 2015, 356(1):22-33. DOI:10.1016/j.canlet. 2013.09. 005.
[29] Hellweg CE. The nuclear factor kappa B pathway:a link to the immune system in the radiation response[J]. Cancer Lett, 2015, 368(2):275-289. DOI:10.1016/j.canlet. 2015.02.019.
[30] Asur R, Balasubramaniam M, Marples BA, et al. Bystander effects induced by chemicals and ionizing radiation:evaluation of changes in gene expression of downstream MAPK targets[J]. Mutagenesis,2010, 25(3):271-279. DOI:10.1093/mutage/geq003.
[31] Savu D, Petcu I, Temelie M, et al. Compartmental stress responses correlate with cell survival in bystander effects induced by the DNA damage agent, bleomycin[J]. Mutat Res, 2015, 771:13-20. DOI:10.1016/j.mrfmmm. 2014.11.005.
[32] Sharabi AB, Lim M, Deweese TL, et al. Radiation and checkpoint blockade immunotherapy:radiosensitisation and potential mecha-nisms of synergy[J/OL]. Lancet Oncol, 2015, 16(13):e498-509[2017-03-20]. http://www.sciencedirect.com/science/article/pii/S1470204515000078.DOI:10.1016/S1470-2045(15)00007-8.
[33] Tang C, Wang X, Soh H, et al. Combining radiation and immuno-therapy:a new systemic therapy for solid tumors?[J]. Cancer Immunol Res, 2014, 2(9):831-838. DOI:10.1158/2326-6066. CIR-14-0069.
[34] Herrera FG, Bourhis J, Coukos G. Radiotherapy combination oppor-tunities leveraging immunity for the next oncology practice[J]. CA Cancer J Clin, 2017, 67(1):65-85. DOI:10.3322/caac.21358.
[35] Faber TJ, Japink D, Leers MP, et al. Activated macrophages contain-ing tumor marker in colon carcinoma:immunohistochemical proof of a concept[J]. Tumor Biol, 2012, 33(2):435-441. DOI:10. 1007/s13277-011-0269-z.
[36] O’neill LA. A critical role for citrate metabolism in LPS signalling[J/OL]. Biochem J, 2011, 438(3):e5-6[2017-03-10]. http://www.biochemj.org/content/438/3/e5.long.DOI:10.1042/BJ20111386.
[37] Sprung CN, Ivashkevich A, Forrester HB, et al. Oxidative DNA damage caused by inflammation May Link to stress-induced nontargeted effects[J]. Cancer Lett, 2015, 356(1):72-81. DOI:10.1016/j.canlet.2013.09.008.
[38] Dong C, He M, Tu W, et al. The differential role of human macrophage in triggering secondary bystander effects after either gamma-ray or crbon beam irradiation[J]. Cancer Lett, 2015, 363(1):92-100. DOI:10.1016/j.canlet.2015.04.013.
[39] Fu JM, Yuan D, Xiao L, et al. The crosstalk between alpha-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-kappa B signaling pathways[J]. Mutat Res, 2016, 783:1-8. DOI:10. 1016/j. mrfmmm. 2015.11.001.
[40] Tang D, Kang R, Zeh HJ, et al. High-mobility group box 1, oxidative stress, and disease[J]. Antioxid Redox Signal, 2011, 14(7):1315-1335. DOI:10.1089/ars.2010.3356.
[41] Garg AD, Krysko DV, Verfaillie T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death[J]. EMBO J, 2012, 31(5):1062-1079. DOI:10.1038/emboj.2011.497.
[42] Ohshima Y, Tsukimoto M, Takenouchi T, et al. Gamma-irradiation induces P2X7 receptor-dependent ATP release from B16 melanoma cells[J]. Biochim Biophys Acta, 2010, 1800(1):40-46.
[43] Elliott MR, Chekeni FB, Trampont PC, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance[J]. Nature, 2009, 461(7261):282-286. DOI:10.1038/nature08296.
[44] Martin OA, Yin X, Forrester HB, et al. Potential strategies to ameliorate risk of radiotherapy-induced second malignant neoplasms[J]. Semin Cancer Biol, 2016, 37-38:65-76. DOI:10.1016/j.semcancer.2015.12.003.
[45] Bernier J. Immuno-oncology:Allying forces of radio-and immuno-therapy to enhance cancer cell killing[J]. Crit Rev Oncol Hematol, 2016, 108:97-108. DOI:10.1016/j.critrevonc.2016.11.001.
[46] Ishihara D, Pop L, Takeshima T, et al. Rationale and evidence to combine radiation therapy and immunotherapy for cancer treatment[J]. Cancer Immunol Immunother, 2017, 66(3):281-298. DOI:10. 1007/s00262-016-1914-6.
[47] Golden EB, Chhabra A, Chachoua A, et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours:a proof-of-principle trial[J]. Lancet Oncology, 2015, 16(7):795-803. DOI:10.1016/S1470-2045(15) 00054-6.

相似文献/References:

[1]李景涛,邓垒,张文珏,等.广泛期小细胞肺癌胸部IMRT后发生放射性肺炎的危险因素分析[J].国际放射医学核医学杂志,2016,40(2):100.[doi:10.3760/cma.j.issn.1673-4114.2016.02.003]
 Li Jingtao,Deng Lei,Zhang Wenjue,et al.Risk factor analysis for predicting radiation pneumonitis in extensive stage small cell lung cancer patients receiving IMRT thoracic radiotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):100.[doi:10.3760/cma.j.issn.1673-4114.2016.02.003]
[2]刘佳,高刚,朴春南,等.调节肿瘤放射敏感性的miRNAs研究进展[J].国际放射医学核医学杂志,2016,40(2):159.[doi:10.3760/cma.j.issn.1673-4114.2016.02.015]
 Liu Jia,Gao Gang,Piao Chunnan,et al.Progress of microRNAs in regulating tumor radiation sensitivity[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):159.[doi:10.3760/cma.j.issn.1673-4114.2016.02.015]
[3]陈晓艳,张江虹,邵春林.STAT3与辐射敏感相关性的研究进展[J].国际放射医学核医学杂志,2016,40(3):191.[doi:10.3760/cma.j.issn.1673-4114.2016.03.007]
 Chen Xiaoyan,Jianghong,Shao Chunlin.Research progresses of correlation between STAT3 and radiosensitivity[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):191.[doi:10.3760/cma.j.issn.1673-4114.2016.03.007]
[4]赵德云,李百龙.植物提取物防治放射性肺损伤的现状与展望[J].国际放射医学核医学杂志,2016,40(3):208.[doi:10.3760/cma.j.issn.1673-4114.2016.03.010]
 Zhao Deyun,Li Bailong.Protective and therapeutic effects of plant extracts on radiation-induced lung injury:present status and future prospects[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):208.[doi:10.3760/cma.j.issn.1673-4114.2016.03.010]
[5]田琦,蒋宁一,郑丽.265例精细个体化131I治疗Graves甲亢的疗效观察[J].国际放射医学核医学杂志,2016,40(4):259.[doi:10.3760/cma.j.issn.1673-4114.2016.04.004]
 Tian Qi,Jiang Ningyi,Zheng Li.Therapeutic effect of fine individual 131I treatment on Graves disease hyperthyroidism[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):259.[doi:10.3760/cma.j.issn.1673-4114.2016.04.004]
[6]邓大平,卢峰,孙洪强,等.颅脑肿瘤放射治疗时射野外器官吸收剂量体模法测量与分析[J].国际放射医学核医学杂志,2016,40(4):272.[doi:10.3760/cma.j.issn.1673-4114.2016.04.007]
 Deng Daping,Lu Feng,Sun Hongqiang,et al.Test and analysis of out-of-field organ dose in intracranial tumor radiotherapy using phantom[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):272.[doi:10.3760/cma.j.issn.1673-4114.2016.04.007]
[7]张俊伶,薛晓蕾,李源,等.富氢水对电离辐射引起胸腺细胞损伤的影响[J].国际放射医学核医学杂志,2015,39(5):358.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 001]
 zhang junling,xue xiaolei,li yuan,et al.effects of hydrogen-rich water on radiation-induced thymus injury[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):358.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 001]
[8]赵舒怡,储小飞,樊赛军.血清肿瘤标志物与肿瘤放疗疗效评估的研究进展[J].国际放射医学核医学杂志,2015,39(5):427.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 018]
 zhao shuyi,chu xiaofei,fan saijun..progression of study on serum tumor markers in evaluation of tumor radiotherapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):427.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 018]
[9]赵徵鑫,翟贺争,张文艺,等.质子重离子治疗肿瘤的进展[J].国际放射医学核医学杂志,2016,40(5):384.[doi:10.3760/cma.j.issn.1673-4114.2016.05.010]
 Zhao Zhixin,Zhai Hezheng,Zhang Wenyi,et al.Development of proton heavy ion in tumor therapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):384.[doi:10.3760/cma.j.issn.1673-4114.2016.05.010]
[10]段永璇,邹晓艳,段秀梅,等.数据解析在肿瘤放射治疗中的应用[J].国际放射医学核医学杂志,2015,39(6):505.[doi:10.3760/cma.j.issn.1673-4114.2015.06.015]
 Duan Yongxuan,Zou Xiaoyan,Duan Xiumei,et al.Data analysis in the field of tumor radiation therapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):505.[doi:10.3760/cma.j.issn.1673-4114.2015.06.015]

备注/Memo

备注/Memo:
收稿日期:2017-03-27。
基金项目:国家自然科学基金(31570850,81273001)
通讯作者:邵春林,Email:clshao@shmu.edu.cn
更新日期/Last Update: 2017-06-28