[1]杨奇,马云,肖方竹,等.辐射防护基因治疗现状与展望[J].国际放射医学核医学杂志,2017,41(3):205-208,219.[doi:10.3760/cma.j.issn.1673-4114.2017.03.009]
 Yang Qi,Ma Yun,Xiao Fangzhu,et al.Advancement in radioprotective gene therapy[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(3):205-208,219.[doi:10.3760/cma.j.issn.1673-4114.2017.03.009]
点击复制

辐射防护基因治疗现状与展望(/HTML)
分享到:

《国际放射医学核医学杂志》[ISSN:1673-4114/CN:12-1381/R]

卷:
41
期数:
2017年第3期
页码:
205-208,219
栏目:
综述
出版日期:
2017-05-25

文章信息/Info

Title:
Advancement in radioprotective gene therapy
作者:
杨奇1 马云1 肖方竹2 何淑雅12
1. 421001 衡阳, 南华大学生物化学与分子生物学教研室;
2. 21001 衡阳, 南华大学公共卫生学院放射医学教研室
Author(s):
Yang Qi1 Ma Yun1 Xiao Fangzhu2 He Shuya12
1. Department of Biochemistry and Molecular Biology, University of South China, Hengyang 421001, China;
2. Department of Radiation Medicine, School of Public Health, University of South China, Hengyang 421001, China
关键词:
辐射防护辐射损伤基因治疗
Keywords:
Radiation protectionRadiation injuriesGene therapy
DOI:
10.3760/cma.j.issn.1673-4114.2017.03.009
摘要:
放射治疗是恶性肿瘤的主要治疗手段之一,超过50%的肿瘤患者在病程的不同阶段都需要接受放疗。尽管影像引导靶向治疗技术不断发展,使患者受到的辐射剂量大大降低,但仍然存在严重的不良反应——正常组织细胞的辐射损伤。为了减少正常组织损伤,研究人员一直在寻找辐射防护的新方法。目前的辐射防护方法多是采用化学合成小分子物质及天然植物提取物作为辐射防护剂使用,但疗效并不十分理想,研究人员迫切想找到一种高效可行的辐射防护新方法。基因治疗以其靶向明确、细胞毒性小、不良反应少等优点在增强细胞和组织相关性能上具有很大优势,使其成为极好的辐射防护新方法。笔者对辐射防护的基因治疗研究及其未来的改进方向做一综述。
Abstract:
Radiation therapy is an important treatment for malignant tumors as more than 50% of patients receive radiation therapy for their illnesses. Patients receiving radiation doses have been significantly reduced because of the advancement in image-guided radiation. However, serious side effects occur owing to the off-target radiation damage to normal tissues. To decrease the level of injury, researchers have explored new radiation protection methods. Currently, agents available for protecting normal tissues against radiation damage mainly include synthesized small molecules and plant extracts with poor results. Researchers have explored new efficient approaches to radiation protection. Several advantages in gene therapy, such as targeting, low toxity, and minimal side effects, render it as an ideal strategy for radiation protection and significantly enhance the biological properties of cells and tissues. Radiation protection gene therapy and its development as a radiation protection strategy are reviewed in this paper.

参考文献/References:

[1] Citrin D, Cotrim AP, Hyodo F, et al. Radioprotectors and mitigators of radiation-induced normal tissue injury[J]. Oncologist, 2010, 15(4):360-371. DOI:10. 1634/theoncologist. 2009-S104.
[2] Pensado A, Seijo B, Sanchez A. Current strategies for DNA therapy based on lipid nanocarriers[J]. Expert Opin Drug Deliv, 2014, 11(11):1721-1731. DOI:10. 1517/17425247. 2014. 935337.
[3] Chen H, Xiang H, Wu B, et al. Manganese superoxide dismutase gene modified mesenchymal stem cells attenuates acute radiation-induced lung injury[J/OL]. Hum Gene Ther, 2016[2016-11-20]. http://online.liebertpub.com/doi/10.1089/hum.2016.10.[published online ahead of print Nov 2, 2016]. DOI:10. 1089/hum. 2016. 106.
[4] Epperly MW, Dixon T, Wang H, et al. Modulation of radiation-induced life shortening by systemic intravenous MnSOD-plasmid liposome gene therapy[J]. Radiat Res, 2008, 170(4):437-443. DOI:10. 1667/RR1286. 1.
[5] Epperly MW, Bernarding M, Gretton J, et al. Overexpression of the transgene for Manganese superoxide dismutase (MnSOD) in 32D cl 3 cells prevents apoptosis induction by TNF-alpha, IL-3 withdrawal, and ionizing radiation[J]. Exp Hematol, 2003, 31(6):465-474. DOI:10. 1016/S0301-472X(03)00041-9.
[6] Liang FF, Zhang GS, Yin SW, et al. The role of three heat shock protein genes in the immune response to Aeromonas hydrophila challenge in marbled eel, Anguilla marmorata[J]. Royal Society Open Science, 2016, 3(10):160375. DOI:10. 1098/rsos. 160375.
[7] Lee HJ, Lee YJ, Kwon HC, et al. Radioprotective effect of heat shock protein 25 on submandibular glands of rats[J]. Am J Pathol, 2006, 169(5):1601-1611. DOI:10. 2353/ajpath. 2006. 060327.
[8] Lee HJ, Kwon HC, Chung HY, et al. Recovery from radiation-induced bone marrowdamage by HSP25 through Tie2 signaling[J/OL]. Int J Radiat Oncol Biol Phys, 2012, 84(1):e85-93[2016-11-20]. http://www.sciencedirect.com/science/article/pii/S0360301612002507.DOI:10.1016/j.ijrobp.2012.02.028.
[9] Maier P, Herskind C, Barzan D, et al. SNAI2 as a novel radioprotector of normal tissue by gene transfer using a lentiviral bicistronic SIN vector[J]. Radiat Res, 2010, 173(5):612-619. DOI:10. 1667/RR 1952. 1.
[10] Liu YN, Yin JJ, Abou-Kheir W, et al. MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms[J]. Oncogene, 2013, 32(3):296-306. DOI:10. 1038/onc. 2012. 58.
[11] 李俊. SNAI2作为ceRNA调控MARCKS表达促进卵巢癌侵袭转移的分子机制研究[D]. 上海:复旦大学, 2014. Li J. SNAI2 functions as a ceRNA to promote invasion and metastasis of ovarian cancer cells by inducing MARCKS expression[D]. Shanghai:Fudan University, 2014.
[12] Maier P, Fleckenstein K, Li L, et al. Overexpression of MDR1 using a retroviral vector differentially regulates genes involved in detoxification and apoptosis and confers radioprotection[J]. Radiat Res, 2006, 166(3):463-473. DOI:10. 1667/RR0550. 1.
[13] Maier P, Herskind C, Fleckenstein KA, et al. MDR1 gene transfer using a lentiviral SIN vector confers radioprotection to human CD34(+) hematopoietic progenitor cells[J]. Radiat Res, 2008, 169(3):301-310. DOI:10. 1667/RR1067. 1.
[14] Tsuchiya M, Niwa Y, Simizu S. N-glycosylation of R-spondin1 at Asn137 negatively regulates its secretion and Wnt/β-catenin signaling-enhancing activity[J]. Oncol Lett, 2016, 11(5):3279-3286. DOI:10. 3892/ol. 2016. 4425.
[15] Zhao JS, Kim KA, De Vera J, et al. R-Spondin1 protects mice from chemotherapy or radiation-induced oral mucositis through the canonical Wnt/beta-catenin pathway[J]. Proc Natl Acad Sci U S A, 2009, 106(7):2331-2336. DOI:10. 1073/pnas. 0805159106.
[16] Bhanja P, Saha S, Kabarriti R, et al. Protective role of R-spondin1, an intestinal stem cell growth factor, against radiation-induced gastrointestinal syndrome in mice[J/OL]. PLoS One, 2009, 4(11):e8014[2016-11-20]. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008014.DOI:10.1371/journal.pone.0008014.
[17] Kakavas S, Demestiha T, Vasileiou PA. Erythropoetin as a novel agent with pleiotropic effects against acute lung injury[J]. Eur J Clin Pharmacol, 2011, 67(1):1-9. DOI:10. 1007/s00228-010-0938-7.
[18] Zheng C, Vitolo JM, Zhang W, et al. Extended transgene expression from a nonintegrating adenoviral vector containing retroviral elements[J]. Mol Ther, 2008, 16(6):1089-1097. DOI:10. 1038/mt. 2008. 56.
[19] Rocha EM, Cotrim AP, Zheng CY, et al. Recovery of radiation-induced dry eye and corneal damage by pretreatment with adenoviral vector-mediated transfer of erythropoietin to the salivary glands in mice[J]. Hum Gene Ther, 2013, 24(4):417-423. DOI:10. 1089/hum. 2012. 111.
[20] Tari K, Atashi A, Kaviani S, et al. Erythropoietin induces production of hepatocyte growth factor from bone marrow mesenchymal stem cells in vitro[J]. Biologicals, 2016(16):30120-30127. DOI:10. 1016/j. biologicals.
[21] Hu SY, Chen YD, Li LB, et al. Effects of adenovirus-mediated delivery of the human hepatocyte growth factor gene in experimental radiation-induced heart disease[J]. Int J Radiat Oncol Biol Phys, 2009, 75(5):1537-1544. DOI:10. 1016/j. ijrobp. 2009. 07. 1697.
[22] Li QF, Sun HY, Xiao FJ, et al. Protection against radiation-induced hematopoietic damage in bone marrow by hepatocyte growth factor gene transfer[J]. Int J Radiat Biol, 2014, 90(1):36-44. DOI:10. 3109/09553002. 2014. 847294.
[23] Ghosal D, Omelchenko MV, Gaidamakova EK, et al. How radiation kills cells:survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress[J]. FEMS Microbiol Rev, 2005, 29(2):361-375. DOI:10. 1016/j. femsre. 2004. 12. 007.
[24] Tsai CH, Liao R, Chou B, et al. Transcriptional analysis of deinococcus radiodurans reveals novel small RNAs that are differentially expressed under ionizing radiation[J]. Appl Environ Microbiol, 2015, 81(5):1745-1755. DOI:10. 1128/AEM. 03709-14.
[25] Dong X, Tian B, Dai S, et al. Expression of PprI from deinococcus radiodurans improves lactic acid production and stress tolerance in lactococcus lactis[J/OL]. PLoS One, 2015, 10(11):e0142918[2016-11-20]. http://www.sciencedirect.com/science/article/pii/S0360301609028041.DOI:10.1371/journal.pone.0142918.
[26] Shi Y, Wu W, Qiao H, et al. The protein PprI provides protection against radiation injury in human and mouse cells[J/OL]. Sci Rep, 2016, 6:26664[2016-11-20]. http://www.nature.com/articles/srep26664.DOI:10.1038/srep26664.
[27] Wen L, Yue L, Shi Y, et al. Deinococcus radiodurans pprI expression enhances the radioresistance of eukaryotes[J]. Oncotarget, 2016, 7(13):15339-15355.

相似文献/References:

[1]包明月,刘玉龙.应用间充质干细胞治疗急性辐射损伤的研究现状与进展[J].国际放射医学核医学杂志,2016,40(1):65.[doi:10.3760/cma.j.issn.1673-4114.2016.01.013]
 Bao Mingyue,Liu Yulong.Recent advances in the application of mesenchymal stem cells for treatment of acute radiation injury[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):65.[doi:10.3760/cma.j.issn.1673-4114.2016.01.013]
[2]路璐,张俊伶,李德冠,等.6 gy 137cs γ射线照射对小鼠造血功能损伤的动态观察研究[J].国际放射医学核医学杂志,2015,39(5):393.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 009]
 lu lu*,zhang junling,li deguan,et al.effects of 6 gy 137cs γ-irradiattion on the hematopoietic system of mice[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):393.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 009]
[3]杨珂,唐波,于夕荣,等.甲状腺癌131i治疗病房的辐射屏蔽计算与评价[J].国际放射医学核医学杂志,2015,39(5):405.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 012]
 yang ke,tang bo,yu xirong,et al.shielding calculation and assessment in 131i therapy for thyroid cancer[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):405.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 012]
[4]马永忠,王宏芳,冯泽臣,等.回旋加速器工作场所辐射水平的调查与分析[J].国际放射医学核医学杂志,2015,39(5):407.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 013]
 ma yongzhong,wang hongfang,feng zechen,et al.investigation and analysis of radiation dose levels in a cyclotron room[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):407.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 013]
[5]翟贺争,阮书州,焦玲,等.新型头部γ刀建设项目放射防护控制效果评价[J].国际放射医学核医学杂志,2015,39(5):412.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 014]
 zhai hezheng,ruan shuzhou,jiao ling,et al.radiological protection assessment of construction project based on a new type of head γ knife[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):412.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 014]
[6]刘惠惠,李险峰.放射性心脏损伤诊断和防治的临床研究进展[J].国际放射医学核医学杂志,2016,40(5):374.[doi:10.3760/cma.j.issn.1673-4114.2016.05.008]
 Liu Huihui,Li Xianfeng.Clinical research progress in diagnosis,prevention and treatment of radiation-induced heart disease[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):374.[doi:10.3760/cma.j.issn.1673-4114.2016.05.008]
[7]张倩如,李海涛,田红旗.小分子辐射防护药物的研究进展[J].国际放射医学核医学杂志,2016,40(5):394.[doi:10.3760/cma.j.issn.1673-4114.2016.05.012]
 Zhang Qianru,Li Haitao,Tian Hongqi.Small molecule compounds against radiation:research advances[J].International Journal of Radiation Medicine and Nuclear Medicine,2016,40(3):394.[doi:10.3760/cma.j.issn.1673-4114.2016.05.012]
[8]王浩,沈秀,靳瑾,等.“四物汤”对辐射危害的辅助保护作用研究[J].国际放射医学核医学杂志,2015,39(2):121.[doi:10.3760/cma.j.issn.1673-4114.2015.02.004]
 Wang Hao,Shen Xiu,Jin Jin,et al.Protective activity of Siwu Decoction against radiation hazards[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):121.[doi:10.3760/cma.j.issn.1673-4114.2015.02.004]
[9]曹婉婷,李浣洋,陈雪英,等.正常组织在放射治疗中并发的迟发性损伤[J].国际放射医学核医学杂志,2015,39(3):260.[doi:10.3760/cma.j.issn.1673-4114.2015.03.016]
 Cao Wanting,Li Huanyang,Chen Xueying,et al.Late effects of radiotherapy on normal tissue[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):260.[doi:10.3760/cma.j.issn.1673-4114.2015.03.016]
[10]陈雪梅,周树云,范源,等.表没食子儿茶素没食子酸酯对131I辐射损伤所致甲减大鼠模型抗氧化体系的保护作用[J].国际放射医学核医学杂志,2015,39(4):311.[doi:10.3760/cma.j.issn.1673-4114.2015.04.009]
 Chen Xuemei,Zhou Shuyun,Fan Yuan,et al.Protection of antioxidant system of EGCG on the thyroid in rat model from 131I radiation damage[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):311.[doi:10.3760/cma.j.issn.1673-4114.2015.04.009]
[11]贺欣,储小飞,罗丹,等.穿心莲药物对辐射损伤效应影响的初步研究[J].国际放射医学核医学杂志,2015,39(5):375.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 005]
 he xin,chu xiaofei,luo dan,et al.exploration of andrographolide effects on radiation injury[J].International Journal of Radiation Medicine and Nuclear Medicine,2015,39(3):375.[doi:10. 3760 / cma. j. issn. 1673-4114. 2015. 05. 005]
[12]习忻,刘韩英,徐先早,等.五鹤续断对辐射损伤小鼠保护作用的研究[J].国际放射医学核医学杂志,2010,34(2):116.[doi:10.3760/cma.j.issn.1673-4114.2010.02.016]
 XI Xin,LIU Han-ying,XU Xian-zao,et al.Study on radioprotective effect of Wu-He Dipsacus asper in mice[J].International Journal of Radiation Medicine and Nuclear Medicine,2010,34(3):116.[doi:10.3760/cma.j.issn.1673-4114.2010.02.016]
[13]李德冠,唐卫生,牟感恩,等.5-甲氧基色胺-α-硫辛酸盐对6.0 Gy受照小鼠造血系统的辐射防护作用[J].国际放射医学核医学杂志,2017,41(1):19.[doi:10.3760/cma.j.issn.1673-4114.2017.01.004]
 Li Deguan,Tang Weisheng,Mu Ganen,et al.Protective effects of 5-methoxytryptamine-α-lipoic acid salt on mice exposed to 6.0 Gy total body irradiation[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(3):19.[doi:10.3760/cma.j.issn.1673-4114.2017.01.004]
[14]孟媛媛,杨福军,徐文清.乏氧诱导因子在疾病中作用机制的研究进展[J].国际放射医学核医学杂志,2017,41(5):347.[doi:10.3760/cma.j.issn.1673-4114.2017.05.008]
 Meng Yuanyuan,Yang Fujun,Xu Wenqing.Review of retinal receptors and molecular imaging[J].International Journal of Radiation Medicine and Nuclear Medicine,2017,41(3):347.[doi:10.3760/cma.j.issn.1673-4114.2017.05.008]

备注/Memo

备注/Memo:
收稿日期:2017-2-29。
基金项目:国家自然科学基金(81272993)
通讯作者:何淑雅,Email:heshuya8502@163.com
更新日期/Last Update: 2017-06-28